EBSILON®Professional Online Documentation
EBSILON Professional Components / Components - General and Categories / Storages / Component 166: Phase-change material storage
In This Topic
    Component 166: Phase-change material storage
    In This Topic

    Component 166: Phase-change material storage


    Specifications

    Line Connections

    1

    Main fluid inlet

    2

    Main fluid outlet

    3

    Heat transfer from main fluid (outlet)

    4

    PCM-fluid definition (inlet)

    General       User Input Values       Physics Used       Characteristic Lines      Results       Displays       Example

     

    General

    The component 166 models a PCM storage (here PCM stays for phase change material) including a heat exchanging part for charging / discharging the storage.. To properly understand the description it is highly important to clearly distinguish between the PCM-Fluid (the medium which changes its aggregate state and in which the latent heat is basically stored) and the Fluid (the working medium which flows through the heat exchanger charging / discharging the storage). Contrary to the working medium fluid the PCM-Fluid remains encapsulated within the storage. The working medium fluid flows through the component entering at PIN 1 and leaving at PIN 2. In this way the component 166 is connected to the modelled cycle.

    The PCM-Fluid is defined at PIN 4. This can be done either by component 1 or component 33. See chapter PCM-Fluide for details. For modelling an ice storage one can use LibICE as PCM-Fluid on stream type two-phase-fluid.

    The spatial alignment of Fluid-channel and the PCM-Fluid vessel can be realized in 2 different configurations:

     

     Figure 1: Spatial alignment. a) PCM outside, flow inside b) PCM outside, flow inside

    It is essential to set the consistent geometric parameter values for the fluid channel and the PCM-Fluid vessel according to the spatial alignment.  For FCONF=1 the diameter / side length of the fluid channel must be greater than the diameter / side length of the PCM-Fluid vessel. For FCONF=2 the diameter / side length of the PCM-Fluid vessel must be greater than the diameter / side length of the fluid channel. 

    Furthermore the following geometric types are available:

    For different combinations of the input values FCONF, FGTYPFL, FGTYPPCM there are different alignments conceivable. Not all those alignments make sense and not all of them are implemented. For FGTYPPCM=2 (PCM-Fluid in balls) only FCONF=1 (PCM inside) is available. Further arrangements are shown in Figure 2. The combination of a square channel inside and a cylinder outside is not implemented.

     

     Figure 2. Schematic drawing of the implemented and not implemented (stricken in red) combination of the PCM-Fluid vessel and fluid channel geometry

     


     

    User Input Values

    FINST

    Flag: Determination of transient calculation modes
    = 0: transient solution according to time series table
    = 1: Always steady state solution

    FINIT

     

    Flag: Initializing state

    =0: Global, which is controlled via global variable "Transient mode" under Model Options
          "Extras" ->"Model Options" -> "Simulation" -> "Transient" -> Combo Box "Transient mode"

            (See -> Used Physics / equations -> Global Initialization of Transient Components )

    =1: First run -> Initializing while calculating steady state values
    =2: Continuation run -> Values from previous time step are input for the present ones

    FMODE

     

    Flag: Calculation mode (design / off-design)

    =0:  Global
    = 1: Local off-design

    FCONF

     

    Geometry configuration details

    =1: PCM inside, flow outside

    =2: PCM ouside, flow inside 

    LSTO

    Flow length of storage at FINIT=1

    FGTYPPCM

    PCM vessel wall geometry type

    =0: tube

    =1: square channel 

    =2: ball

    FSTOPCM

    Definition of PCM vessel wall geometry. Required for computing the wall mass and the heat exchanging area:

    =0: Specify the length LSTO, the heat exchanging area AWPCM and the wall mass MWPCM
    =1: Specify the length LSTO, the inner diameter / channel side length DIAIPCM and the wall thickness THWPCM

    DIAIPCM

    Inner diameter / channel side length of the PCM vessel wall

    THWPCM

    Wall thickness of the PCM vessel

    AWPCM

    Heat exchanging area between PCM-Fluid and PCM vessel wall

    MWPCM

    PCM vessel wall mass (not equal to the PCM-Fluid mass!)

    FPCMBALL

    Definition of the PCM ball geometry:

    =0: using THWPCM, DIAIPCM for single balls and PHI
    =1: using THWPCM, AWPCM for single balls and PHI
    =2: using THWPCM, DIAIPCM for single balls and NBALLS
    =3: using THWPCM, AWPCM for single balls and NBALLS

    NBALLS Number of PCM balls

    FGTYPFL 

    Fluid channel geometry type

    =0: tube

    =1: square channel 

    FSTOFL

    Definition of Fluid channel wall geometry. Required for computing the wall mass and the heat exchanging area:

    =0: Specify the length LSTO, the heat exchanging area AWFL and the wall mass MWFL
    =1: Specify the length LSTO, the inner diameter / channel side length DIAIFL and the wall thickness THWFL

    DIAIFL

    Inner diameter / channel side length of the fluid channel

    THWFL

    Wall thickness of the fluid channel

    AWFL

    Heat exchanging area between fluid and fluid channel wall

    MWFL

    Fluid channel wall mass

    FSPECM

    Flag: Handling of fluid mass

    = 1: Fluid mass neglectible
    = 2: Fluid mass considered, outlet equal inlet mass flow
    = 3: Fluid mass considered, outlet different from inlet mass flow

    FDATPCMV

    Specification of thePCM vessel wall material properties

    =1: constant according to RHOPCMV, LAMPCMV, CPPCMV

    =-1: according to FMPCMV

    =-2: according to kernel expressions ERHOPCMV, ECPPCMV, ELAMPCMV

    FMPCMV

    Specification of PCM vessel wall material :    Material Properties of Steel

    RHOPCMV

    PCM vessel wall material density

    LAMPCMV

    PCM vessel wall heat conductivity

    CPCMV

    PCM vessel wall heat capacity

    ERHOPCMV

    Kernel expression PCM vessel wall material density

    ELAMPCMV

    Kernel expression PCM vessel wall heat conductivity

    ECPCMV

    Kernel expression PCM vessel wall heat capacity

    FDATFLV

    Specification of the fluid channel wall material properties

    =1: constant according to RHOFLV, LAMFLV, CPFLV

    =-1: according to FMFLV

    =-2: according to kernel expressions ERHOFLV, ECPFLV, ELAMFLV

    FMFLV

    Specification of fluid channel wall material  :    Material Properties of Steel

    RHOFLV

    Fluid channel wall material density

    LAMFLV

    Fluid channel wall material heat conductivity

    CFLV

    Fluid channel wall material heat capacity

    ERHOFLV

    Kernel expression fluid channel wall material density

    ELAMFLV

    Kernel expression fluid channel wall material heat conductivity

    ECFLV

    Kernel expression fluid channel wall material heat capacity

    THISO

    Thickness of insulation

    LAMISO

    Heat conductivity of insulation

    FTSTEPS

    Controling the sub-time step

    =0:  Scaling the sub-time step according to diffusion numberl and TLSF

    =1: By specification value TISPEP

    TLSF

    Sub-time step scaling factor based on theoretical limit

    ISUBMAX

    Maximum number of time sub steps for initialization 

    IERRMAX

    Maximum allowed error for initializing step

    TISTEP

    Sub-time step 

    NFLOW

    Number of points in x-direction (flow direction)

    NRAD

    Number of points in y-direction (direction normal to flow)

    TMIN 

    Lower limit for storage temperature (relevant for walls as well as PCM-Fluid) 

    TMAX

    Upper limit for storage temperature (relevant for walls as well as PCM-Fluid) 

    FSTAMB 

    Flag: Definition of ambient temperature

    =0: Definition specification value (TAMB)
    =1: Defined from superior model

    TAMB 

    Ambient temperature 

    ISUN 

    Index for solar parameters (e.g. component 117)

    FALPHI 

    Determination of the inner alpha number to internal storage

    =0: according to ALPHI and part load exponent EX12
    =1: according to EALPHI

    ALPHI 

    Inner heat transfer coefficient

    EX12 

    Mass flow exponent for inner heat transfer coefficient
    RALPHI = ALPHI*(M1/M1N**EX12) 

    EALPHI 

    Kernel expression for Inner heat transfer coefficient

    FALPHO

    Determination of alpha outside

    =0: From constant value ALPHO
    =1: From function EALPHO

    ALPHO

    Outer heat transfer coefficient (to ambient) when FALPHO=0 

    EALPHO

    Kernel expression for alpha outside  

    AOUTP

    The part of the outer surface being in contact to ambient

    CLMPCM

    Correction factor to heat conductivity of PCM-Fluid (to account for convection while PCM melting process) 

    FVOL

    Flag: Part-load pressure drop                

    =0: Only depending on mass flow
    =1: Mass flow and density dependent
    =2: Constant (equal nominal value) 

    DP12N

    Pressure drop (nominal, fluid flow)

    PPCM

    Pressure in PCM-Fluid 

    FSTART

    Initialization of the temperature field (FINIT=1)

    =1: temperature of storage (shell and internal storage) equal TSTART
    =2: temperature profile computed from steady state solution 

    TSTART 

    Initial value of temperature (FINIT=1) 

    FDIR 

    Fluid flow direction

    =0: Normal
    =1: Reverted, direction of flow is going to be changed by reflecting the numerical grid without changing the connectors.
          (Caution: Reverting is always carried out, when FDIR=1!) 

    TIMETOT0 

    Total time at start of calculation (Sum of previous time steps)

    PHI Void volume fraction - volume fraction of fluid channel not occupied by PCM balls

    M1N

    Fluid mass flow (nominal)  

    V1N

    Specific volume at inlet (nominal)

     

    The parameters marked in blue are reference quantities for the off-design mode. The actual off-design values refer to these quantities in the equations used.

    Generally, all inputs that are visible are required. But, often default values are provided.

    For more information on colour of the input fields and their descriptions see Edit Component\Specification values

    For more information on design vs. off-design and nominal values see General\Accept Nominal values


     

     

    Results

    T2BEG

    Averaged caloric temperature of the storage in the beginning of the time step

    T2END

    Averaged caloric temperature of the storage at the end of the time step

    QSTO

    Energy stored during time step (storage and fluid)

    QAV

    Average stored energy flow in time step (QSTO/TIMEINT)

    QAVI

    Average energy flow from fluid to storage

    QAVO

    Average energy flow from storage to environment

    RALPHI

    Used inner heat transfer coefficient fluid to storage

    RALPHO

    Used outer heat transfer coefficient (to ambient)

    RASTO

    Computed heat exchanging area fluid to storage

    RWDFL

    Computed fluid layer thickness

    RTHFL

    Computed thickness of fluid channel wall

    RWDPCM

    Computed PCM layer thickness

    RTHPCM

    Computed thickness of PCM vessel wall

    RMSTO

    Overall storage mass

    RMPCM

    Mass of PCM-Fluid

    RVFLUID

    Fluid volume

    MFLUID

    Fluid mass

    RTAMB

    Ambient temperature

    DIFNUMB

    Diffusion numberl (relevant for numeric stability and accuracy, has the same meaning as the input value of TLSF)

    TIMEINT

    Total integration time (current time step)

    TIMETOT

    Total time at end of calculation (time-series)

    TIMESUB

    Sub-time step length

    ISUB

    Number of sub-time steps in the current time step

    TISUBREC

    Recommended sub-time step length, derived presuming DIFNUMB=TLSF

    PREC

    Precision indicator: normalized difference between the heat transferred to fluid, the heat stored in the storage (PCM-Fluid + walls) and the heat flow to the environment 

    PRECPCM Precision indicator for the calculation in PCM-Fluid


     

     

    Physics used / Equations

    The implementation of component 166 is based on 2D-Grid with Crank-Nicolson-Algorithm similar to component 119. Contrary to component 119 the storage of component 166 consists of multiple layers. Those layers include the fluid channel wall, PCM-Fluid itself and the wall of the PCM vessel. The PCM-Fluid layer has the highest thermal resistance and the highest thermal storage capacity. The PCM-Fluid layer is resolved in the direction normal to the flow by NRAD elements. The fluid channel wall and the PCM vessel wall are resolved each by just one element in the flow normal direction.

    The PCM-Fluid, as soon as it becomes liquid, is able to recirculate which, in turn, causes free convection heat flow additionally to the heat conduction. The acceleration of the heat transfer due to convection can be taken into account in the simulation by means of the correction factor CLMPCM. The numeric solution of the heat equation on 2D-grid does not explicitly account for a flow of PCM-Fluid between the grid elements.

    The time step length (defined by intervals in time-series) and the sub-time steps (defined in component 166 via FTSTEPS, TISTEP, TLSF) are important for the accuracy and stability of computation. The accuracy regarding the overall energy balance between the fluid and the storage is indicated by the result value PREC. The result value PRECPCM the accuracy of calculation in PCM-Fluid. An additional aid in setting the sub-time step length is provided by the diffusion number (result value DIFNUMB). It is recommended to set the sub-time step width so that the diffusion number does not exceed the value of 10.  One can make use of the input value FTSTEPS and set it to 0 while setting the value of TLSF to 10 (standard value of TLSF).

    All established PCMs (including ice) change their density / specific volume at phase transition (solid-liquid or liquid-solid) by approximately 9-11%. Due to this fact the volume occupied by the PCM layer in the storage changes as well. The volume change results in the changing of the heat exchanging area between fluid and storage. The PCM-Fluid mass is defined in the initial step of the time-series by the specification of geometry (definition of PCM vessel) and the initial temperature. The temperature value defines the PCM aggregate state and consequently the PCM density. From the known PCM-Fluid density and the PCM vessel volume the PCM mass is computed. This mass does not change in the following time steps.

     

    Characteristic Lines and Matrices

    All characteristic lines form a circular buffer. The user doesn´t have to take care of them.

    Corresponding to this there are also result curves.

    Specification matrices MXTSTOPCM, MXLAMSTOPCM, MXCPSTOPCM, MXRHOSTOPCM and result matrices RXTSTOPCM, RXLAMSTOPCM, RXCPSTOPCM, RXRHOSTOPCM

    The matrix MXTSTOPCM is linked to the output field RXTSTOPCM in the same way as the characteristic curves and result curves mentioned above.

    The distribution of the values in the storage and the fluids is stored in both matrices (default matrix MXTSTOPCM for time step t-1 and result matrix RXTSTOPCM for time step t).

    For the structure of the matrices, see matrices of component 160.

    Displays

    Display option 1


    Example

    Click here>> Component 166 Demo << to load an example.