EBSILON®Professional Online Documentation
EBSILON Professional Components / Components - General and Categories / Storages / Component 165: Thermal regenerator / Bulk material storage
In This Topic
    Component 165: Thermal regenerator / Bulk material storage
    In This Topic

    Component 165: Thermal regenerator / Bulk material storage


    Specifications

    Line Connections

    1

    Main inlet, normal flow direction

    2

    Main outlet, normal flow direction

    3

    Main inlet, reverted flow direction

    4

    Main outlet, reverted flow direction

    5

    Heat transfer from main fluid (outlet)

     

    General       User Input Values       Physics Used       Characteristic Lines      Results       Displays       Example

     

    General

    The component 165 can be used to model a thermal regenerator (e.g. cowper) / a bulk material storage. Thereby there is a difference between the internal storage (suffix "IS" in parameter names e.g. FDATAIS) and the shell (suffix "S" in parameter names e.g. FDATAS). The shell may have cylinder shape or be a square channel. The shell geometry determines the overall storage volume in which the internal storage material is enclosed.

    The shell wall and the internal storage mass may consist of different materials and may have heat transfer coefficient values regarding the heat transfer to or from the working fluid medium. One can specify different material properties as well as heat transfer coefficients in the corresponding input fields.

    For the alternating flow directions in the storage while charging and discharging phase there are PINs 1, 2 and 3, 4 as well as the flag FDIR provided . The component expects the working medium to either flow from PIN 1 to PIN 2 or from PIN 3 to PIN 4. A simultaneous specification of mass flow values > 0 on all four PINS does not make sense and is not allowed.

    For the calculation of the pressure loss in the working medium flow there is an EBSILON standard algorithm with the nominal value DP12N and the Off-Design scaling as well as the formulas according to VDI Heat Atlas L1.6. The last method requires 2 additional parameters

    The heat transfer coefficient to internal storage can be specified directly (parameters ALPHIIS, EALPHIIS, EXALPHIIS). Alternatively, one can use the formulas according to VDI Heat Atlas G9 (FALPHIIS=2). The last technique requires, like the pressure loss calculation, the characteristic diameter of the storage elements and the corresponding shape factor. The shape factor for the calculation of the heat transfer coefficient is defined by means of the parameters FSFALF and SFALF.

     

     


     

     

    User Input Values

    FINST

    Flag: Determination of transient calculation modes
    = 0: transient solution according to time series table
    = 1: Always steady state solution

    FINIT

     

    Flag: Initializing state

    =0: Global, which is controlled via global variable "Transient mode" under Model Options
          "Extras" ->"Model Options" -> "Simulation" -> "Transient" -> Combo Box "Transient mode"

            (See -> Used Physics / equations -> Global Initialization of Transient Components )

    =1: First run -> Initializing while calculating steady state values
    =2: Continuation run -> Values from previous time step are input for the present ones

    FMODE

    Flag: Calculation mode (design / off-design)

    =0:  Global
    = 1: Local off-design

    FALGS

     

    Flag: Determination of transient calculation algorithms for the shell wall
    = 1: Crank-Nicolson-Algorithm
    = 4: Combined numerical and analytical solution

    FALGIS

    Flag: Determination of transient calculation algorithms for the internal storage
    = 1: Crank-Nicolson-Algorithm
    = 4: Combined numerical and analytical solution

    FGTYP

    Shell wall geometry type

    =0: tube
    =1: square channel 

    FSTO

    Shell wall geometry definition. Required for computing the mass and the heat exchanging area:

    =0: Length LSTO, area ASTO and mass MSTO are given
    =1: Length LSTO, inner diameter / channel side length DIAI and wall thickness THSTO are given

    LSTO

    Shell wall length in flow direction

    DIAI

    Shell inner diameter / channel side length

    THSTO

    Shell wall thickness

    ASTO

    Heat exchanging area between fluid and shell wall 

    MSTO

    Shell wall mass

    PHI

    Free cross section fraction (void volume fraction or porosity)

    FV

    Outer surface to volume ratio of the internal storage

    FDPC

    Schalter zur Berechnung des charakteristischen (äquivalenten) Durchmessers der Speicherelemente

    =0: Berechnung mittels FV

    =1: gemäß DPC

    DPC

    Characteristic (equivalent) diameter of the storage elements (VDI Heat Atlas L1.6 Table 1)

    FSPECM

    Flag: Handling of fluid mass

    = 1: Fluid mass neglectible
    = 2: Fluid mass considered, outlet equal inlet mass flow
    = 3: Fluid mass considered, outlet different from inlet mass flow

    FDATAS 

    Specification of the shell wall material properties  

    =1: constant according to RHOS, LAMS, CPS

    =-1: according to FMSHELL

    =-2: accoring to kernel expressions ERHOS, ECPS, ELAMS

    FMSHELL

    Specification of shell wall material :    Material Properties of Steel

    RHOS 

    Shell wall material density

    LAMS 

    Shell wall material heat conductivity

    CPS

    Shell wall material heat capacity

    ERHOS

    Kernel expression shell wall material density

    ELAMS

    Kernel expression shell wall material heat conductivity

    ECPS

    Kernel expression shell wall material heat capacity

    FDATAIS

    Specification of the internal storage material properties  (bulk material, storage pattern elements)

    =1: constant according to RHOIS, LAMIS, CPIS

    =-1: according to FMINST

    =-2: according to kernel expressions ERHOIS, ECPIS, ELAMIS

    FMINST

    Specification of internal storage material :    Material Properties of Steel

    RHOIS

    Internal storage material density

    LAMIS

    Internal storage material heat conductivity

    CPIS

    Internal storage material heat capacity

    ERHOIS

    Kernel expression internal storage material density

    ELAMIS

    Kernel expression internal storage material heat conductivity

    ECPIS

    Kernel expression internal storage material heat capacity

    THISO

    Thickness of shell insulation

    LAMISO

    Heat conductivity of insulation

    FTSTEPS

    Flag: Specification of (sub-) time steps

    =1: By specification value TISPEP
    =2: 0.2 of the stable theoretical time increment
    =3: 0.5 of the stable theoretical time increment
    =4: 1.0 of the stable theoretical time increment
    =5: 2.0 of the stable theoretical time increment
    =6: 5.0 of the stable theoretical time increment 

    ISUBMAX

    Maximum number of time sub steps for initialization (FINIT=1 and FALGIS=1)

    IERRMAX

    Maximum allowed error for initializing step (FINIT=1 and FALGIS=1)

    TISTEP

    Sub-time step (FALGIS=1 or FALGS=1)

    NFLOW

    Number of points in x-direction

    NYS

    Number of points in storage wall normal direction for shell wall (FALGS=1)

    NYIS

    Number of points in storage wall normal direction for internal storage (FALGIS=1)

    TAUADJ

    Correction factor for the time constant of the storage wall (FALGIS=4 or FALGS=4) 

    LAMADJ 

    Multiplication factor to 1/LAMBDA - the walls heat conductivity resistance (FALGIS=4 or FALGS=4)

    Setting LAMADJ=0 is equivalent to neglecting the walls heat conductivity resistance: either the wall thickness is infinitely small or lambda value is infinitely high

    Setting LAMADJ=1 is equivalent to computing the  walls heat conductivity with the original value of LAMBDA and wall thickness

    LAMADJ<1 leads to decreasing the walls heat conductivity resistance

    LAMADJ>1 leads to increasing the walls heat conductivity resistance

    TMIN

    Lower limit for storage temperature

    TMAX

    Upper limit for storage temperature

    FSTAMB 

    Flag: Definition of ambient temperature

    =0: Definition specification value (TAMB)
    =1: Defined from superior model

    TAMB

    Ambient temperature 

    ISUN

    Index for solar parameters (e.g. component 117)               

    FALPHIS 

    Determination of the alpha number to shell wall

    =0: according to ALPHIS and part load exponent EXALPHIS
    =1: according to EALPHIS

    ALPHIS 

    Inner heat transfer coefficient to shell wall 

    EALPHIS 

    Kernel expression for inner heat transfer coefficient to shell wall 

    EXALPHIS

    Mass flow exponent for internal alpha number to shell wall

    FALPHIIS

    Determination of the alpha number to internal storage

    =0: according to ALPHIIS and part load exponent EXALPHIIS
    =1: according to EALPHIIS
    =2: using geometry and formulas from VDI Heat Atlas G9 

    ALPHIIS

    Inner heat transfer coefficient to internal storage

    EALPHIIS

    Kernel expression for Inner heat transfer coefficient to internal storage

    EXALPHIIS

    Mass flow exponent for Inner heat transfer coefficient to internal storage

    FSFALF

    Determination of the shape factor for ALPHIIS calculation according to VDI Heat Atlas G9

    =0: using value of SFALF
    =1: using formula for balls 
    =2: using formula for cylinder cuts or cubes
    =3: using formula for Raschig rings
    =4: using formula for Bern saddles 

    SFALF

    Shape factor for ALPHIIS calculation according to VDI Heat Atlas G9

    FALPHO

    Determination of alpha outside

    =0: From constant value ALPHO
    =1: From function EALPHO

    ALPHO

    Outer heat transfer coefficient (to ambient) when FALPHO=0

    EALPHO

    Kernel expression for alpha outside 

    AOUTP 

    The part of the outer surface being in contact to ambient

    FDP12 

    Pressure loss calculation

    =0 : DP12N
    =1: according to geometry and VDI Heat Atlas L1.6

    FVOL 

    Flag: Part-load pressure drop

    =0: Only depending on mass flow
    =1: Mass flow and density dependent
    =2: Constant (equal nominal value) 

    DP12N 

    Pressure drop (nominal)

    PHIDP 

    Pressure drop shape factor of internal storage (FDP12=1) (VDI Heat Atlas L1.6 Table 1)

    FSTART 

    Initialization of the temperature field (FINIT=1)

    =1: temperature of storage (shell and internal storage) equal TSTART
    =2: temperature profile computed from steady state solution 
    =3: temperature of storage (shell and internal storage) and fluid equal TSTART

    TSTART  

    Initial value of temperature (FINIT=1)

    FDIR  

    Stream direction

    =0: normal, fluid flow from PIN 1 to PIN 2

    =1: reverted, fluid flow from PIN 3 to PIN 4

    DIRLAST 

    Stream direction in the previous time step

    TIMETOT0  

    Total time at start of calculation (Sum of previous time steps) 

    M1N

    Fluid mass flow (nominal) 

    V1N

    Specific volume at inlet (nominal)

     

    The parameters marked in blue are reference quantities for the off-design mode. The actual off-design values refer to these quantities in the equations used.

    Generally, all inputs that are visible are required. But, often default values are provided.

    For more information on colour of the input fields and their descriptions see Edit Component\Specification values

    For more information on design vs. off-design and nominal values see General\Accept Nominal values


     

     

    Results

    TAVBEG

    Averaged caloric temperature of the storage in the beginning of the time step

    TAVEND

    Averaged caloric temperature of the storage at the end of the time step

    T2BEG

    Outlet temperature of fluid in the beginning of time step

    T2END

    Outlet temperature of fluid in the end of time step

    QSTO

    Energy stored during time step (internal storage, shell wall and fluid)

    QAV

    Average stored energy flow in time step (QSTO/TIMEINT)

    QAVI

    Average energy flow from fluid to storage

    QAVO

    Average energy flow from storage to environment

    RALPHIIS

    Used inner heat transfer coefficient fluid to internal storage

    RALPHO

    Used outer heat transfer coefficient (to ambient)

    RASTO

    Used overall heat exchanging area of storage (shell + internal storage)

    RTHSTO

    Equivalent plane thickness (internal storage)

    RMSTO

    Used overall mass of storage (shell + internal storage)

    RVFLUID

    Used flow volume of fluid

    MFLUID

    Mass of fluid in storage (FSPECM>1)

    PFLAV

    Average pressure in fluid

    HFLAV

    Average enthalpy in fluid

    TFLAV

    Average temperature in fluid

    RHOFLAV

    Average density of fluid (FSPECM>1)

    RTAMB

    Ambient temperature used in calculation

    BIOTIS

    Biot number internal storage

    TIMEINT

    Total integration time (current time step)

    TIMETOT

    Total time at end of calculation (time-series)

    DIRCUR

    Stream direction at current time step (0=normal, 1=reverted)

    PREC

    Precision indicator: normalized difference between the heat transferred to fluid, the heat stored in the storage (internal storage + shell wall) and the heat flow to the environment 

    RALPHIS

    Used inner heat transfer coefficient fluid to shell

    BIOTS Biot number shell


     

     

    Physics used / Equations

    The calculation of the component 165 is based on the simplification of the internal storage geometry. The real storage pattern of a regenerator can be replaced by the equivalent plate geometry. Doing so one has to keep equal the overall mass and the overall heat exchanging surface area of the real storage pattern and of the simplified plate.

    The internal storage is specified by two parameters

    Once fV, φ and the overall volume (storage pattern and the void volume) are known, the volume of the internal storage and its contact surface area can be computed. The results are used to define the equivalent plate. The equivalent plate represents the internal storage in the calculation of the heat transfer as well as heat charge and discharge.

    The overall fluid flow is internally split according to the area ratio into part flows regarding the shell and regarding the internal storage. The sub-system fluid-shell wall and the sub-system fluid-internal storage are treated separetely in the simulation. Finally the mean values of temperature, enthalpy are obtained by average according to the mass fractions.

    For the heat conduction calculations there are 2 alternative algorithms available for both the shell wall and the internal storage (control via parameters FALGS, FALGIS). See  Component 119  for details.

     

    Characteristic Lines and Matrices

    All characteristic lines form a circular buffer. The user doesn´t have to take care of them.

    Corresponding to this there are also result curves.

     

    Specification matrices MXTSTOS, MXTSTOIS and result matrices RXTSTOS, RXTSTOIS

    The matrix MXTSTOS is linked to the output field RXTSTOS in the same way as the characteristic curves and result curves mentioned above.

    The distribution of the values in the storage and the fluids is stored in both matrices (default matrix MXTSTOS for time step t-1 and result matrix RXTSTOS for time step t).

    For the structure of the matrices, see matrices of component 160.

    Displays

    Display option 1


    Example

    Click here>> Component 165 Demo << to load an example.