EBSILON®Professional Online Documentation
In This Topic
    Component 96: Extended Coal-Gasifier
    In This Topic

    Component 96: Extended Coal-Gasifier


    Specifications

    Line connections

    1

    Oxidizing fluid inlet

    2

    Crude gas outlet

    3

    Water-/Steam inlet

    4

    Coal inlet

    5

    Ash subtraction

    6

    Oil inlet

    7

    Gas inlet

    8

    Heat extraction (to be specified)

    9

    Control input (for degree of coal gasification, if FGASN=2)

     

    General       User Input Values       Characteristic Lines       Physics Used       Displays       Example

     

    General

    This component maps a coal gasifier. As compared to the existing Component 50 the component 96 has the following extensions:

                 -  Calculation of raw gas temperature, composition and residual carbon

                 -  Specification of carbon mass flow, residual carbon and raw gas outlet temperature, calculation of air and steam mass flow and the raw gas composition

                 -  Distribution of sulfur on slag and fly dust, specification of the percentage of S, which is not converted in H2S, but instead lands up in the slag.

     

    User Input Values

     

    FSPEC

    Handling the water-gas reaction

    Like in Parent Profile (Sub Profile option only)

    Expression

    =0: Calculation of the outlet concentrations of H2, H2O, CO

           and CO2 from the water-gas reaction

    =1: Specification of the H2-concentration in XOUT, calculation of the remaining from the element balances

    =2: Specification of the H2O-concentration in XOUT, calculation of the remaining from the element balances

    =3: Specification of the CO-concentration in XOUT, calculation of the remaining from the element balances

    =4: Specification of the CO2-concentration in XOUT, calculation of the remaining from the element balances

    XOUT

    Outlet concentration (content by mass) as per the setting of FSPEC

    FOUT

    Handling of the formation of CH4, H2S, NH3 and Benzene

    Like in Parent Profile (Sub Profile option only)

    Expression

    =0: RCH4N, RH2SN, RNH3 and RBENZN are interpreted as reaction rates

    =1: RCH4N, RH2SN, RNH3 and RBENZN are interpreted as content by mass in the exhaust gas

    =2: RCH4N, RH2SN, RNH3 and RBENZN are interpreted as mole fraction in the exhaust gas

    RCH4N

    CH4 to C - ratio (at FOUT=0) or

    CH4-concentration in the exhaust gas (as per FOUT) 

    RH2SN

    H2S to S - ratio (at FOUT=0) or

    H2S-concentration in the exhaust gas (as per FOUT) 

    RNH3N

    NH3 to N - ratio (at FOUT=0) or

    NH3-concentration in the exhaust gas (as per FOUT) 

    RBENZN

    Benzol to C - ratio (at FOUT=0) or

    Benzene-concentration in the exhaust gas (as per FOUT) 

    FGASN

    Type of specification of the degree of coal gasification:

    Like in Parent Profile (Sub Profile option only)

    Expression

    =0: Specification through the specification value RGASN

    =1: Specification through a pseudo-measurement point, to which the specification value IPSGASN points

    =2: Specification through the control input 9 (to be specified as enthalpy on the logic line) 

    RGASN

    Degree of coal gasification (if FGASN=0)

    IPSGASN

    Index of the pseudo-measurement point for the degree of coal gasification

    (if FGASN=1)

    FSPECM

    Type of specification of the mass flows

    Like in Parent Profile (Sub Profile option only)

    Expression

    =1: Only one mass flow is specified and the remaining are calculated

    =2: All the inlet mass flows are specified

    M6MF

    Share of the oil mass flow in the total fuel mass flow

    M7MF

    Share of the gas mass flow in the total fuel mass flow 

    FSFT

    Type of specification of the shift-reaction

    Like in Parent Profile (Sub Profile option only)

    Expression

    =1: Use of the temperature of the exhaust gas as the reaction temperature

    =2: Specification of the reaction temperature in the specified value TFRE

    =3: specification of the reaction constants in the specified value CWGS

          (for definition of CWGS see the explanations under

          "Explanations for the constant CWGS" in Component 50)

    CWGS

    Reaction constant for the shift reaction

    (Water-gas shift constants), if FSFT=3

    TFRE

    Freezing temperature for the shift-reaction, if FSFT=2

    ROCN

    Ratio of oxygen to carbon:
    Molar ratio of the whole O (including O in the fuel

    and in the steam) to the whole C,
    The value must lie between 1 (CO) and 2 (CO2)

    RWM4N

    Ratio of water/steam to fuel:

    Mass ratio between line 3 (steam inlet) and the

    sum of the lines 4, 6, 7 (fuel inlets)

    RFLAS

    Fly-ash ratio:

    Distribution of ash on the raw-gas outlet and ash extraction

    RFLAS specifies the percentage of ash, which goes in the raw-gas

    Outlet.

    RCFA

    Distribution of the (ungased) carbon on the raw-gas outlet

    and ash extraction

    RCFA specifies the percentage of carbon, which goes in the raw-

    gas outlet

    FQLOSS

    Type of specification of the heat loss:

    Like in Parent Profile (Sub Profile option only)

    Expression

    =0: User entry for value QLOSS contains the absolute heat loss
    =1: User entry for value QLOSS contains the relative heat loss,
      with reference to the fuel heat brought in
      (mass flow * calorific value)                

    QLOSS

    Heat loss (as per FQLOSS)

    DP12N

    Absolute pressure drop (nominal)

    TASHE

    Slag temperature (line 5)

    FMODE

    Calculation mode

    Like in Parent Profile (Sub Profile option only)

    Expression

    =0: global (as set for the entire cycle)

    =1: local partial load (always partial load, even when the design

           mode is set for the cycle)

    M1N             

    Mass flow of the oxidation agent (nominal)

    The parameters marked in blue are reference quantities for the off-design mode. The actual off-design values refer to these quantities in the equations used.  

    Generally, all inputs that are visible are required. But, often default values are provided.

    For more information on colour of the input fields and their descriptions see Edit Component\Specification values

    For more information on design vs. off-design and nominal values see General\Accept Nominal values


     

    Result values

    ROC

    Oxygen to carbon ratio

    RWM4

    Steam to coal ratio

    RCWGS

    Calculated water gas shift constant

    RGAS

    Carbon gasification

    RCCH4

    CH4-production (C in CH4 / C total)

    RSH2S

    H2S-production (S in H2S / S total)

    NCVCG

    Crude gas-Net calorific value at 0°C

    NCVFUEL

    Net calorific value of natural gas at 0°C (average)

    RQCGC

    Energy ratio of natural gas to coal

    RTEQ

    Calculated equilibrium temperature

    RQLOSS

    Calculated heat loss

    TR1

    Equilibr. T for CO+H2O=CO2+H2

    TR2

    Equilibr. T for C+CO2=2 CO

    TR3

    Equilibr. T for C+H2O=CO+H2

    TR4

    Equilibr. T for CO+3 H2=CH4+H2O

    TR5

    Equilibr. T for C+2 H2=CH4

    RFA

    ratio of fuel mass flow to air mass flow

    RFAST

    stoichiometric ratio of fuel mass flow to air mass flow (i.e. the ratio required for complete combustion)

    EQRAT

    equivalence ratio = RFA / RFAST
    (according to https://www.sciencedirect.com/topics/engineering/equivalence-ratio).

    An equivalence ratio EQRAT greater than 1 always indicates a fuel excess in the fuel-oxidant mixture, i.e. more fuel than required for a complete combustion (stoichiometric reaction), irrespective of which fuel and which oxidant are used, whereas ratios smaller than 1 indicate a lack of fuel or an equivalent oxidant excess in the mixture.

    Please note that the equivalence ratio relates to the air number λ as follows: λ = 1 / EQRAT.

     


     

    Characteristic Lines

    Characteristic 1, CCSL: Degree of gasification RGAS/RGASN = f (M1/M1N)
    C-gasification

         X-axis          1         M1/M1N                      1st point
                            2          M1/M1N                     2nd point
                            .
                            N         M1/M1N                      last point
     
         Y- axis         1          RGAS/RGASN              1st point
                            2          RGAS/RGASN              2nd point
                            .
                            N         RGAS/RGASN               last point

     

    Characteristic 2, CCH4: CH4-conversion characteristic    RCH4/RCH4N = f (M1/M1N)
    CH4 production

         X- axis         1          M1/M1N                     1st point
                            2          M1/M1N                     2nd point
                            .
                            N         M1/M1N                      last point
     
         Y- axis         1          RCH4/RCH4N             1st point
                            2          RCH4/RCH4N             2nd point
                            .
                            N         RCH4/RCH4N              last point

     

    Characteristic 3, CH2S: H2S-conversion characteristic    RH2S/RH2SN = f (M1/M1N)
    H2S production

         X- axis         1         M1/M1N                      1st point
                            2          M1/M1N                     2nd point
                            .
                            N         M1/M1N                      last point
     
         Y- axis        1          RH2S/RH2SN               1st point
                            2          RH2S/RH2SN              2nd point
                            .
                            N         RH2S/RH2SN               last point

      

    Characteristic 4, CNH3: NH3-conversion characteristic    RNH3/RNH3N = f (M1/M1N)
    NH3 production

         X- axis         1         M1/M1N                     1st point
                            2          M1/M1N                    2nd point
                            .
                            N         M1/M1N                     last point
     
         Y- axis         1          RNH3/RNH3N            1st point
                            2          RNH3/RNH3N            2nd point
                            .
                            N         RNH3/RNH3N             last point

     

    Characteristic 5, CBENZ: Benzene conversion characteristic    RBENZ/RBENZN = f (M1/M1N)
    Benzene production

         X- axis         1          M1/M1N                    1st point
                            2          M1/M1N                    2nd point
                            .
                            N         M1/M1N                     last point
     
         Y- axis         1          RBENZ/RBENZN         1st point
                            2          RBENZ/RBENZN         2nd point
                            .
                            N         RBENZ/RBENZN          last point


    Physics Used

    Equations

    All Cases

     

    Mass flows

    --------------------

    M1MF from gasification balance

    M2MF from gasification balance

    M3MF from gasification balance

    M4MF =  1-M6MF-M7MF (user input values)

    M5MF from gasification balance

      

    If FSPECM = 1:

     

       M4 - M4MF/M1MF * M1 = 0                             

       M6 - M6MF/M1MF * M1 = 0                             

       M7 - M7MF/M1MF * M1 = 0                             

       M2 - M2MF*M4 - M2MF*M6 - M2MF*M7 = 0  

       M3 - M3MF*M4 - M3MF*M6 - M3MF*M7 = 0 

       M5 - M5MF*M4 - M5MF*M6 - M5MF*M7 = 0  

     

    If FSPECM = 2:

      

       M5 - M5MF*M4 - M5MF*M6 - M5MF*M7 = 0  

       M1 - M2 + M3 + M4 - M5 + M6 + M7              

     

    Pressures

    ----------

      Design:  P1 - P2 = DP12N                                   

      Partial load:  M1R=M1/M1N

                     P1 - P2  = DP12N*M1R*M1R              

     

      P4 - P5 = 0                                                         

      P6 - P5 = 0                                                         

      P7 - P5 = 0                                                        

      P1 - P4 = 0                                                       

      P1 - P3 = 0                                                        

     

    Enthalpies

    --------------

    T5   = TASHE

    H5   = f(P5,T5)                                                     

     

    If FQLOSS = 1:

       QL = QLOSS

     

    If FQLOSS = 2:

       QL = QLOSS*(M4*NCV4+M6*NCV6+M7*NCV7)

          

    M2*H2 - M1*H1 - M3*H3 - M4*H4 + M5*H5

    - M6*H6 - M7*H7 + M8*H8 =

    M4*NCV4-M2*NCV2-M5*NCV5+M6*NCV6

    +M7*NCV7-QL                                                    

     


    Component Displays

    Display Option 1

    Example

    Click here >> Component 96 Demo << to load an example.

    See Also