EBSILON®Professional Online Documentation
In This Topic
    Component 50: Coal Gasifier
    In This Topic

    Component 50: Coal Gasifier


    Specifications

    Line connections

    1

    Oxidizing inlet

    2

    Crude gas outlet

    3

    Water-/Steam inlet

    4

    Coal inlet

    5

    Ash extraction

     

    General       User Input Values       Characteristic Lines       Physics Used       Displays       Example

     

    General

    The component for coal gasification simulates the chemical conversion in the reactor of a coal-to-gas plant under design and off-design conditions.

    At the nominal load point, the model returns the adiabatic outlet temperature and the gasification products under consideration of the boundary conditions

     

    For off-design mode, the calculation is carried out in the same way as for the design mode, but with the difference that the load-dependent characteristic lines are used.

    For simulating the complete system of "gasifier", a high temperature heat exchanger must be used for describing the reactor wall cooling.

     

    The reactor model permits the simulation of

     

    Solid bed gasifiers can only be described approximately. Because of the low temperature, the shift-balance is not reached and a number of higher hydrocarbons will develop that are not contained in the crude gas library.

     

    Model

    The model of the coal gasifier comprises of two sub models:

     

    The description given below restricts itself to the reactor; the high temperature heat exchanger (component 51) is handled analog to the known heat-exchanger components (component 26).

    However, an additional radiation characteristic line allows a more realistic consideration of radiant heat transmission.

     

    The reactor model is essentially based on the assumption that the water-gas shift balance

             KP(T) = CO H2O/(CO2 H2)

    is valid. This is a good approximation for gasifier systems with operating temperatures between 1472 and 1652 °C, so that flue-dust and fluidized bed gasifiers become accessible for a simulation. There are three methods for calculating the shift constants. 

    Regardless of these simplifications, the calculation of the reactor process requires five more limiting values, which are based on experience or measurements. 

    These are:

     

    The supplied and the extracted mass flows can be defined in two ways:

     

    In the off-design mode, the same model is used with the difference that

    are defined as load-dependent characteristic lines. 

     

    The following new result values are output for the gasifier components: RFA, RFAST, EQRAT

     


    User Input Values

    DP12N

    Absolute pressure loss (nominal)

    ROCN

    Oxygen/Carbon ratio

    RWM4N

    Water-Steam/Coal ratio

    RFLAS

    Fly ash ratio

    RCFA

    ratio C (fly ash) /C (fly ash and ash)

    RGASN

    Efficiency of carbon gasification (nominal)

    RCCH4N

    C in CH4/C total ratio (nominal)

    RSH2SN

    S in H2S/S total ratio (nominal)

    CWGS

    Water-gas shift constants

    TFRE

    Freezing temperature of the shift reaction

    TASHE

    Ash temperature

    FMODE

    Calculation mode

    Like in Parent Profile (Sub Profile option only)

    Expression

    =0: GLOBAL

    =1: local off-design

    FSFT

    Calculation of the shift reaction

    Like in Parent Profile (Sub Profile option only)

    Expression

    =1: calculate shift reaction at temperature T2

    =2: calculate shift reaction at TFRE

    =3: calculate shift reaction at input CWGS

    FMAS

    Switch for calculation type of the mass balance

    Like in Parent Profile (Sub Profile option only)

    Expression

    =1: Input of 1 mass flow from M1/M2/M3/M4

    =2: Input of 3 mass flows from M1/M2/M3/M4

    M1N                     

    Mass flow of oxidizing fluid (nominal)

    The parameters marked in blue are reference quantities for the off-design mode. The actual off-design values refer to these quantities in the equations used.  

    Generally, all inputs that are visible are required. But, often default values are provided.

    For more information on colour of the input fields and their descriptions see Edit Component\Specification values

    For more information on design vs. off-design and nominal values see General\Accept Nominal values


     

    Result values

    ROC

    Oxygen to carbon ratio

    RWM4

    Steam to coal ratio

    RCWGS

    Calculated water gas shift constant

    RGAS

    Carbon gasification

    RCCH4

    CH4-production (C in CH4 / C total)

    RSH2S

    H2S-production (S in H2S / S total)

    NCVCG

    Net calorific value of natural gas at 0°C

    NCVCOAL

    Net calorific value of coal at 0°C

    RQCGC

    Energy ratio of natural gas to coal

    RFA

    Ratio fuel mass flow to air mass flow

    RFAST

    stoichiometric ratio of fuel mass flow to air mass flow (i.e. the ratio required for complete combustion)

    EQRAT

    equivalence ratio = RFA / RFAST
    (according to https://www.sciencedirect.com/topics/engineering/equivalence-ratio).

    An equivalence ratio EQRAT greater than 1 always indicates a fuel excess in the fuel-oxidant mixture, i.e. more fuel than required for a complete combustion (stoichiometric reaction), irrespective of which fuel and which oxidant are used, whereas ratios smaller than 1 indicate a lack of fuel or an equivalent oxidant excess in the mixture.

    Please note that the equivalence ratio relates to the air number λ as follows: λ = 1 / EQRAT.

     

     

    Characteristic Lines

    Characteristic line 1, CCSL: C-degree of the gasification characteristic line RGAS/RGASN = f (M1/M1N)

     

         X-axis          1         M1/M1N                     1st point
                            2          M1/M1N                    2nd point
                            .
                            N         M1/M1N                     last point
     
         Y-axis          1          RGAS/RGASN             1st point
                            2          RGAS/RGASN             2nd point
                            .
                            N         RGAS/RGASN             last point
     

     

    Characteristic line 2, CCH4: CH4-conversion-characteristic line RCCH4/RCCH4N = f (M1/M1N)

     

         X-axis          1         M1/M1N                      1st point
                            2          M1/M1N                     2nd point
                            .
                            N         M1/M1N                      last point
     
         Y-axis          1          RCCH4/RCCH4N         1st point
                            2          RCCH4/RCCH4N         2nd point
                            .
                            N         RCCH4/RCCH4N         last point
     

     

    Characteristic line 3, CH2S: H2S-conversion-characteristic line RSH2S/RSH2SN = f (M1/M1N)

     

         X-axis          1          M1/M1N                     1st point
                            2          M1/M1N                     2nd point
                            .
                            N         M1/M1N                      last point
     
         Y-axis          1          RSH2S/RSH2SN          1st point
                            2          RSH2S/RSH2SN          2nd point
                            .
                            N         RSH2S/RSH2SN           last point
     

      


    Physics Used

    Equations

    All cases

     

    Elementary components

    ---------------------------------------

     

    Calculation of the elementary mass portions EL4

    C, H, O, N, S, CL, AR, ash, KLKof coal

     

    Calculation of the elementary mass portions  EL1

    C, H, O, N, S, CL, AR, ash, KLKof the oxidant

     

    Different load cases

    ------------------------------

    if FMAS = 1  (Calculation of the mass flows through ROCN and RWM4N),     then {

    M3M4= RWM4N

    M1M4 = f(ROCN)   }

     

    if FMAS = 2  (Input of the mass flows through M1, M3, M4), then {

    M3M4 = M3/M4

    M1M4 = M1/M4  }

     

    if FSFT=1    (shift constant at T2), then {  SH = A*EXP(-B/(T2+273.15))  }

     

    if FSFT =2    (shift constant at TFRE), then {

      SH = A*EXP(-B/(TFRE+273.15))  }

     

    if FSFT =3    (shift constant for CWGS), then {

      SH = CWGS  }

     

    Calculation of the components in crude gas and ash

    -------------------------------------------------------------------------------------------------

     

    Ash formation

    ZA= EL4_ASH*RFLAS

    SA = EL4_ASH*(1-RFLAS)

     

    C-gasification

    CV = EL4_C * RGASN

     

    carbon remaining in crude gas and ash

    ZC = EL4_C*RCFA*     (1-RGASN)

    SC = EL4_C*(1-RCFA)*(1-RGASN)

     

    CH4-portion in crude gas

    ZCH4= EL4_C*RCCH4N*MCH4/MC

     

    H2S-portion in crude gas

    ZH2S = EL4_S * RSH2SN *MH2S/MS

    ZCOS = EL4_S * (1-RSH2SN)*MH2S/MS

     

    HCL-portion in crude gas

    ZHCL = EL4_CL* MHCL/MCL

     

    N2-portion in crude gas

    ZN2= EL4_N+EL1_N*M1M4

     

    AR-portion in crude gas

    ZAR= EL4_AR+EL1_AR*M1M4

     

    O2-portion in crude gas

    ZO2= 0

     

    Solution of the reactions equation

    ------------------------------------------------------

    The 4 components in the crude gas

            ZCO2

            ZCO

            ZH2

            ZH2O

     

    are calculated from

            the shift balanceSH = CO2*H2/(CO*H2O),

            the C-balance,

            the H-balance,

            the O-balance

     

     

    Calculation of the crude gas components

    ------------------------------------------------------

          ZSUM = ZN2+ZO2+ZAR+ZH2O+ZCO2+ZCO+ZCOS+ZH2+ZH2S+ZCH4+ZHCL+ZC+ZA

     

          d2tod4 =ZSUM

     

          XN2   = ZN2/ZSUM

          XO2   = ZO2/ZSUM

            etc.

      

    Calculation of the ash components

    ----------------------------------------------------- 

    ASUM = SA+SC

     

    M5/M4 =ASUM

     

     A = SA/ASUM

     C = SC/ASUM

     

    Equations for pressure

    ==============================

     

    F    = 1.0

    F    = (M1/M1N) ** 2            for GLOBAL = off-design

     

    DP12 = DP12N * F

     

    P2   = P1 - DP12                                                                                                   

    P4   = P1                                                                                                                

    P3   = P1                                                                                                                

    P4   = P5                                                                                                                

     

    Calculations for enthalpy

    ===========================

     

    T5   = TASHE

    H5   = f(P5,T5)                                                                                                      

    M2   = M1 + M3 + M4 - M5

     

    H2   = (M1 * H1 + M3 * H3 +  M4 *(H4+NCV4) - M5 * H5)/M2 - NCV2            

     

    Calculations for mass flow

    ============================

     

    M1    = M1M4 * M4                                                                                            

    M2    = M2M4 * M4                                                                                             

    M3    = M3M4 * M4                                                                                            

    M5    = M5M4 * M4                                                                                           

     

     


    Component Displays

    Display Option 1

    Example

    Click here >> Component 50 Demo << to load an example.

    See Also