EBSILON®Professional Online Documentation
In This Topic
    Component 86: SCR-DeNOx-Plant (NOx-Removal)
    In This Topic

    Component 86: SCR-DeNOX-Plant (NOX-removal)


    Specifications

    Line connections

    1

    Flue gas inlet

    2

    Flue gas outlet

    3

    NH3-inlet

     

    General       User Input Values       Characteristic lines       Physics Used       Displays       Example

     

    General

    Component 86 simulates a denitrogenization plant (SCR). Here, the fraction of nitrogen oxide (NO, NO2) is reduced in the flue gas by using ammonia (NH3) or a mixture containing ammonia. The scope of this reduction is determined by three characteristic lines.

    The first characteristic line CRNO1 describes, how the fraction of the remaining nitrogen oxide (NOX2/NOX1) changes depending on the flue gas mass flow. This characteristic line refers to the nominal mass flow determined in the design calculation.

    The second characteristic line CRNO2 describes, how the fraction of the remaining nitrogen oxide changes when the supply of ammonia is increased. The reference point of this characteristic line is the stoichiometric minimum of the ammonia quantity M3MIN, which is needed for the desired conversion (i.e. not the nominal mass flow!). This characteristic line needs to be defined only for values > 1. Caution: In case of this characteristic line the y-values must cover the entire possible range, because the program here searches the x-value for a given y. Especially, it should go asymptotically to infinity for small values of M3/M3MIN.

    The third characteristic line CRNO3 describes the effect of the temperature on the fraction of the remaining nitrogen oxide. This characteristic line is not normalized, i.e. the temperatures must be entered directly.

     

    In the design case the outlet concentrations of NOx and NH3 must be specified by NOXN und NH3N. The necessary quantity of ammonia is then calculated.

    In off-design mode there are two calculation possibilities set through the flag FSPEC:

    In both the cases, the input values of the flue gas (mass flow, pressure, temperature as well as the material composition) on line 1 must be specified. On line 3, NH3 must be entered in the composition; moreover, pressure and temperature must also be specified. The program calculates the properties of the flue gas coming out (line 2).

    Pressure drop limitations:
    As the pressure drop rises quadratically with the mass flow, pressure drops that are significantly too high can quickly arise in the event of a transgression of the nominal mass flow. These will then cause phase transitions and convergence problems. For this reason, pressure drop limitations have been installed.
    (See: Model Settings -> Simulation -> Calculation)

     

    The component considers the following reactions, which take place in the catalyst at 300 - 400 °C in the presence of oxygen: 

                       4 NO + O2 + 4 NH3  -->  4 N2 + 6 H2O

                       2 NO2 + O2 + 4 NH3 ---> 3 N2 + 6 H2O


    User Input Values

     

    FCON

    Flag for interpreting the given concentrations

    (NOXN, NOXT, NH3N, NH3MAX)

    Like in Parent Profile (Sub Profile option only)

    Expression

    = 1: Mole fraction at reference O2 concentration

    = 2: Normalized mass fraction at reference O2 concentration

     The difference between FCON=1 and FCON=2 is the fact that for FCON=2 you have to specify some kind of "density" for the pollutant fraction, i.e. mass of pollutant per volume of flue gas (therefore the dimension mg/Nm³). If you divide this density by the density of the pure pollutant, you get the corresponding volume fraction.

    In the implementation, the case FCON=2 is traced back to FCON=1, using a constant density of 0.759629 kg/m³ for NH3 and 2.05204 kg/m³ for NOx (independent of NOSPL).

    NOXN

    Outlet-NOX-concentration (nominal)

    This value is used only for the design calculation

    FSPEC

    Flag for operation type

    Like in Parent Profile (Sub Profile option only)

    Expression

    = 1: NOXT given, M3 calculated

    = 2: M3 given from outside, NOX calculated at the outlet

    NOXT

    NOX-reference-concentration (in off-design)

    This value is used only for the off-design calculation

    NH3N

    NH3-concentration at the outlet (nominal)

    This value is used only for the design calculation

    NH3MAX

    Maximum NH3-concentration at the outlet

    A warning message is given if this concentration is exceeded

    TMIN

    Minimum temperature for NOX-separation

    TMAX

    Maximum temperature for NOX-separation

    DP12N

    Pressure drop within flue gas (nominal)

    FMODE

    Calculation mode design /off-design

    Like in Parent Profile (Sub Profile option only)

    Expression 

    =0: GLOBAL

    =1: Local off-design i.e. always off-design mode, even when the model is calculated in the design mode.

    RNON      

    NOX-reduction NOX2/NOX1 (nominal)

    RNO1N    

    Nominal reduction for characteristic line 1

    RNO2N    

    Nominal reduction for characteristic line 2

    RNO3N    

    Nominal reduction for characteristic line 3

    NH3V       

    Relative NH3-mass flow M3N/M3min (nominal)

    M1N         

    Inlet flue gas mass flow (nominal)

    M3N        

    Ammonia mass flow (nominal)

    V1N         

    Specific volume at the inlet (nominal)

    The identification value marked in blue is the reference value for the off-design mode. The actual off-design values refer to the values used in the equations.

    Generally, all inputs that are visible are required. But, often default values are provided.

    For more information on colour of the input fields and their descriptions see Edit Component\Specification values

    For more information on design vs. off-design and nominal values see General\Accept Nominal values


     

    Result values  

    RNO

    Calculated reduction coefficient

    RNOXO2

    NOX concentration at the outlet translated to reference O2 concentration, depending on FCON as molar or normalized mass fraction

    RNH3O2

     NH3 concentration at the outlet translated to reference O2 concentration, depending on FCON as molar or normalized mass fraction              

    M3MIN

    stoichiometric minimum value for the ammonia supply (quantity required for the reaction if the entire ammonia reacted and no residual ammonia remained in the exhaust gas)

    M3M3MIN

    ratio M3 to M3MIN

    LNH3

    absolute NH3 slip (NH3 mass flow at the exhaust gas outlet):
    LNH3 = $._2.M*$._2.XHN3

    LRNH3

    relative NH3 slip (NH3 mass flow at the exhaust gas outlet in relation to the NH3 supply):
    LRNH3 = $._2.M*$._2.XHN3 / ($._1.M*$._1.XHN3 + $._3.M*$._3.XHN3)

    Also when using 2-phase fluid or binary mixture at connection point 3.

    RCRNO1

    value calculated from characteristic line CRNO1

    RCRNO2

    value calculated from characteristic line CRNO2

    RCRNO3

    value calculated from characteristic line CRNO3


     

    Characteristic Lines

    Characteristic line 1, CRNO1: Effect of the flue gas mass flow on the NOx-reduction

    NOX-Removal (NOX2/NOX1in mol%) = f(M1/M1N)

     

         X-axis          1          M1/M1N                    1st point
                            2          M1/M1N                    2nd point
                            .
                            N         M1/M1N                     last point
     
         Y-axis          1         NOX2/NOX1               1st point
                            2         NOX2/NOX1               2nd point
                            .
                            N        NOX2/NOX1               last point

     

     

    Characteristic line 2, CRNO2: Effect of the ammonia mass flow on the NOx-reduction

    NOX-Removal (NOX2/NOX1 in mol%) = f(M3/M3MIN)

     

         X-X-axis      1          M3/M3MIN                1st point
                            2          M3/M3MIN                2nd point
                            .
                            N         M3/M3MIN                last point
     
         Y-axis          1         NOX2/NOX1               1st point
                            2         NOX2/NOX1               2nd point
                            .
                            N        NOX2/NOX1                last point
     

     

    Characteristic line 3, CRNO3 : Effect of the flue gas temperature on the NOx-reduction

    NOX-Removal (NOX2/NOX1 in mol%)= f(T1)

     

         X-axis          1         T1                               1st point
                            2          T1                               2nd point
                            .
                            N         T1                               last point
     
         Y-axis          1         NOX2/NOX1               1st point
                            2          NOX2/NOX1               2nd point
                            .
                            N         NOX2/NOX1               last point
     

     


    Physics Used

    Equations 

    All cases

     

     

    P2 = P1 DP12                                                       

     

    M2= M1 + M3                                                     

     

    H2 = ((H1+DH_REAK)*M1+(H3-DH_VERD)*M3)/M2

                                                                                 

                                 

    DH_REAK: Reaction heat of reactions 1), 2)

    DH_VERD: Heat of evaporation of NH3 

     

     

     

    Design case

    (Simulation flag:

    GLOBAL = Design case

    and

    FMODE = GLOBAL)

     

     

    Pressure drop

    P2 = P1 DP12N                                                   

     

    Energy balance

    H2 = ((H1+DH_REAK)*M1+(H3-DH_VERD)*M3)/M2

                                                                                 

                            

    DH_REAK: Reaction heat of reactions1), 2)

    DH_VERD: Heat of evaporation of NH3

     

    Mass balance

    M2= M1 + M3                                                     

     

    Calculation of the reduction

     

    Input:             Concentrations of flow 1

                          Default Nox-reference = NOXN

                          Default NH3-reference = NH3N

    Calculation:

    Concentrations of flow 2 and

    mass flow 3 as per                                             

            1)     4 NO    +  O2 + 4 NH3 = 4 N2 + 6 H2O

            2)     2 NO2  +  O2 + 4 NH3 = 3 N2 + 6 H2O

            3)     NH3 = NH3N

            4)     NOX=NOXN

            5)     Split NO/NO2 remains intact

     

    Mass flow 3 (minimum) as per

            1)  4 NO    +  O2 + 4 NH3 = 4 N2 + 6 H2O

            2)  2 NO2  +  O2 + 4 NH3 = 3 N2 + 6 H2O

            3)  NH3 = 0

            4)  NOX=NOXN

            5)  Split NO/NO2 remains intact

     

    Ratio VNH3=M3/M3MIN

                              

    RNO = NOX(Flow 2)/NOX(Flow 1) (in mol%)

     

    RNO1N from characteristic line 1 with M1/M1M = 1

     

    RNO2N from characteristic line 2 with VNH3

     

    RNO3N from characteristic line 3 with T1=T1N in limits TMIN/TMAX                       

     

     

    Off-design

    (Simulation flag:

    GLOBAL = Off-design

    or

    FMODE = Local Off-design)

     

     

     

    Pressure drop

    V1: Specific volume of flow 1

    DP12 = DP12N*(M1/M1N)**2*(V1/V1N)

    P2 = P1 DP12                                                       

     

    Energy balance

    H2 = ((H1+DH_REAK)*M1+(H3-DH_VERD)*M3)/M2

                                                                                 

                            

    DH_REAK: Reaction heat of reactions 1), 2)

    DH_VERD: Heat of evaporation of NH3

     

    Mass balance

    M2= M1 + M3                                                     

     

    Calculation of reduction

    ------------------------------------------------------------------------------

    IF  FSPEC = 1 THEN

    ------------------------------------------------------------------------------

    Input:             Concentrations of flow 1

                          Default Nox-reference = NOXT

                          Default NH3-reference = NH3MAX

    Calculation:

    Concentrations of flow 2 and                              

                             mass flow 3 according to           

    1)     4 NO    +  O2 + 4 NH3 = 4 N2 + 6 H2O

    2)     2 NO2  +  O2 + 4 NH3 = 3 N2 + 6 H2O

    3)     NH3 = NH3MAX

    4)     NOX = NOXT

    5)     Split NO/NO2 remains intact

     

           Mass flow 3 (minimum) according to

    1)  4 NO    +  O2 + 4 NH3 = 4 N2 + 6 H2O

    2)  2 NO2  +  O2 + 4 NH3 = 3 N2 + 6 H2O

    3)  NH3 = 0

    4)  NOX = NOXT

    5)  Split NO/NO2 remains intact

     

    Maximum ratio VNH3MAX=M3/M3MIN

                              

    RNO = NOX(flow 2)/NOX(flow 1) (in mol%)

     

    RNO1 from characteristic line 1 with M1/M1M

     

    RNO3 from characteristic line 3 with T1 in limits TMIN/TMAX

     

    RNO2 = RNO2N*(RNO/RNON)/((RNO1/RNO1N)*(RNO3/RNO3N))  

     

    VNH3 from characteristic line 2 with RNO2

     

    ITERATION 1 START

    -----------------------------------------------------------

     

      Input:             Concentrations of flow 1

                            Default NOX-reference = NOXT

                            Default VNH3

      Calculation:  Concentrations of flow 2 and

                             mass flow 3 according to           

    1)     4 NO    +  O2 + 4 NH3 = 4 N2 + 6 H2O

    2)     2 NO2  +  O2 + 4 NH3 = 3 N2 + 6 H2O

    3)     NH3 = fromVNH3

    4)     NOX = NOXT

    5)     Split NO/NO2 remains intact

                                                  

    RNO = NOX(flow 2)/NOX(flow 1) (in mol%)

     

    RNO1 from characteristic line 1 with M1/M1M

     

    RNO3 from characteristic line 3 with T1 in limits TMIN/TMAX

     

    RNO2 = RNO2N*(RNO/RNON)/((RNO1/RNO1N)*(RNO3/RNO3N))  

     

    VNH3 from characteristic line 2 with RNO2

     

    IF RNO2 constant THEN

     

    ITERATION 1 END

    ------------------------------------------------------------------------------

    IF  FSPEC = 2 THEN

    ------------------------------------------------------------------------------

    NOX = NOXT

     

    ITERATION 2 START

     

    Same algorithm as for FSPEC = 1 but with

     

    1)     NOX variable

    2)     M3actual as function of NOX

    3)     Iteration according to REGULA-FALSI by varying NOX

    M3actual = M3

     

    ITERATION 2 END

     

    -------------------------------------------------------------------------------

    FSPEC  END

    -------------------------------------------------------------------------------

                             

    V1: Specific volume flow 1

     

    DP12 = DP12N*(M1/M1N)**2*(V1/V1N)

     

     

     

     

     

    Component Displays

    Display Option 1

    Example

    Click here >> Component 86 Demo << to load an example.

    See Also