EBSILON®Professional Online Documentation
In This Topic
    Component 78: Natural Draft Cooling Tower
    In This Topic

    Component 78: Natural Draft Cooling Tower (with characteristic field)


    Specifications 

    Line connections

    1

    Air inlet

    2

    Air outlet

    3

    Cooling water inlet

    4

    Cooling water outlet

    5

    Make-Up water inlet

    6

    Blow Down

     

    General       User Input Values       Characteristic Lines       Physics Used       Displays       Example

     

    General

    The component "wet cooling tower" simulates the performance of wet cooling towers with natural draft under nominal and off-design conditions.  A characteristic diagram describes the cooling tower performance.

     

    Characteristic Diagram

    The basis of the characteristic diagram is the German industrial standard DIN 1947 (version of May 1989). The detailed structure of the description is taken from page 11 of this standard.  The main purpose of DIN 1947 is to support cooling tower acceptance tests; consequently, the characteristic diagram only covers a narrow range of operation with regards to the cooling water flow.  Systems with uncontrolled cooling water pumps, i.e. constant cooling water flow under all operating states, this nomograph can be used to model cooling tower performance throughout the yearly climatic cycle.  

     

    The characteristic diagram defines the cooling range or cold water temperature as a function of

    Ten (10) characteristic curves, organized in three (3) curve sets, describe the performance nomograph.  All curve sets are plotted in the same x-y-diagram with the dry bulb temperature (T1) as x-axis and the warm water inlet temperature (TWARM) as y-axis.   The following curves need to be defined: 

     The actual values of the parameter air-moisture, relative water flow rate and range must be within the definition range of the curves. Thus 

     

    If inputs exceed these limits, the limits are taken as input parameters.  Otherwise, a linear interpolation is done.  No extrapolation will be done; all returning values will be kept between the MIN and MAX constraints.

     

     

    FMODE

    This switch permits the use of different off-design states.

     

    FSPECL 

    For this component, the physical behaviour is determined by a characteristic field of operation. Outside this field, results may occur which are physically not reasonable. A mechanism was implemented that restricts the temperature to the range of the characteristic field. This action may yield to different results compared. If this change has to be avoided, you can deactivate the restriction by deactivating the flag FSPECL in the property sheet of the cooling tower.

     

    T4 specification 

    For the identification mode (T4 specification) there are result values T3CL and T3CLCCR indicating which hot water temperature would arise due to the characteristic field to the width of the cooling section specified from outside. Here T3CL takes the unchanged characteristic field as a basis, and T3CLCCR the characteristic field corrected by the offset CCR.

     

    Blow down

    The mass flow for the blow down water can be specified externally now.

     

    Identification Mode

    It is possible to specify the cold water temperature T4 from outside (FMODE=-1). The cooling range will be calculated in this case.

     

    Adaptation Polynomial ADAPT / Adaptation function EADAPT

    Either the cooling range or the cold water temperature can be calculated or corrected with an adaptation polynomial or adaptation function.

     

    Notes:

    For this component, the physical behaviour is determined by a characteristic field. Outside this field, results may occur which are physically not reasonable. A mechanism was implemented that restricts the temperature to the range of the characteristic field. This action may yield to different results. If this change has to be avoided, you can deactivate the restriction by deactivating the flag FSPECL in the property sheet of the cooling tower.

    There may be situations where it is not possible to close the energy balances based on the settings. Often, this was caused by a high setting for the spray losses.

    In such cases, the air mass flow is limited to a plausible range between 0.2 and 5 times the cooling water mass flow (with a warning).
    As a result, there may be slight changes in the results (mass flow, water content) on the air side.  


    User Input Values

    T4CN

    Cold water temperature (nominal)

    DP34N

    Pressure loss line 34 (nominal)

    Optional input, in case left empty, both pressures must be specified from outside.

    MSM3

    Drift loss fraction (MS/M3)

    M6M3

    Blow down fraction (M6/M3)

    Optional input, in case left empty, the blow down mass flow must be specified outside.

    FMODE

    Flag for calculation mode
    Like in Parent Profile (Sub Profile option only)

    Expression 

    =0: GLOBAL 

    =1: local off-design with normalized performance nomograph
    [ T4 = T3- (CCR+CR) ] 

    =2: Use performance nomograph
    [ T4 = T3 CR ] 

    = -1: T4-specification from outside
    (Identification mode, characteristic diagram is not used)

    FSPEC

    Flag for make-up mode

    Like in Parent Profile (Sub Profile option only)

    Expression

    =0: Circulation mode, i.e.

           M3=M4 and M5=M2-M1+M6

    =1: Discharge mode, i.e.

           M4=M3-(M2-M1+M6) and M5=0

    FSPECL

    Temperature limitations

    Like in Parent Profile (Sub Profile option only)

    Expression

    =0: No limitation

     =1: Temperature restricted according to characteristic field

    FADAPT

    Flag for using the adaptation polynomial ADAPT / adaptation function EADAPT

    Like in Parent Profile (Sub Profile option only)

    Expression

    =0: not used and not evaluated

    =1: CR = Polynomial * CR from performance nomograph

    =2: CR = Polynomial

    =3: T4  = T4CN*Polynomial

    =1000: Not used, but ADAPT evaluated as RADAPT (Reduction of the computing time)

    = -1: CR = adaptation function * CR from performance nomograph

    = -2: CR = adaptation function

    = -3: T4  = T4CN*adaptation function

    = -1000: Not used, but EADAPT evaluated as RADAPT (Reduction of the computing time)

    EADAPT

    Adaptation function

    PHI1_1

    Characteristic curve parameter moisture 1

    PHI1_2

    Characteristic curve parameter moisture 2

    LOAD_1

    Characteristic curve parameter M3/M3N_1

    LOAD_2

    Characteristic curve parameter M3/M3N_2

    CR_1

    Characteristic curve parameter cooling range 1

    CR_2

    Characteristic curve parameter cooling range 2

    CR_3

    Characteristic curve parameter cooling range 3

    CR_4

    Characteristic curve parameter cooling range 4

    CR_5

    Characteristic curve parameter cooling range 5

    CR_6

    Characteristic curve parameter cooling range 6

    PHI1N     

    Air humidity (nominal)

    T1N         

    Air temperature at inlet (nominal)

    T3N         

    Warm water temperature (nominal)

    CCR        

    Correction of the characteristic diagram parameter

    M1N         

    Air mass flow (nominal)

    M3N        

    Cooling water mass flow (nominal)

     

    The identification value marked in blue is a reference value for off-design calculations. The actual off-design values refer to the values used in the equations.

    Generally, all inputs that are visible are required. But, often default values are provided.

    For more information on colour of the input fields and their descriptions see Edit Component\Specification values

    For more information on design vs. off-design and nominal values see General\Accept Nominal values


    Characteristic Lines

    Characteristic curve: Warm water (T3) Characteristic curve CT3_PHI1_1 : T3=f(T1,PHI1_1)

    X-axis               1          T1                               1st point
                            2          T1                               2nd point
                            .
                            N         T1                               last point
     
    Y-axis               1          T3(PHI1_1)                 1st point
                            2          T3(PHI1_1)                 2nd point
                            .
                            N         T3(PHI1_1)                  last point

     

    Characteristic curve: Warm water (T3) Characteristic curve CT3_PHI1_2 : T3=f(T1,PHI1_2)

    X-axis               1          T1                               1st point
                            2          T1                               2nd point
                            .
                            N         T1                               last point
     
    Y-axis               1          T3(PHI1_2)                 1st point
                            2          T3(PHI1_2)                 2nd point
                            .
                            N         T3(PHI1_2)                  last point

     

    Characteristic curve: Warm water (T3) Characteristic curve CT3_M3M3N_1 : T3=f(T1,LOAD_1)

    X-axis               1          T1                               1st point
                            2          T1                               2nd point
                            .
                            N         T1                                last point
     
    Y-axis               1          T3(LOAD_1)                 1st point
                            2          T3(LOAD_1)                 2nd point
                            .
                            N         T3(LOAD_1)                 last point

     

    Characteristic curve: Warm water (T3) Characteristic curve CT3_M3M3N_2 : T3=f(T1,LOAD_2)

    X-axis               1          T1                               1st point
                            2          T1                               2nd point
                            .
                            N         T1                                last point
     
    Y-axis               1          T3(LOAD_2)                1st point
                            2          T3(LOAD_2)                2nd point
                            .
                            N         T3(LOAD_2)                 last point

     

    Characteristic curve: Warm water (T3) Characteristic curve  CT3_CR_1 : T3=f(T1,CR_1)

    X-axis               1          T1                               1st point
                            2          T1                               2nd point
                            .
                            N         T1                                last point
     
    Y-axis               1          T3(CR_1)                     1st point
                            2          T3(CR_1)                     2nd point
                            .
                            N         T3(CR_1)                      last point

     

    Characteristic curve: Warm water (T3) Characteristic curve CT3_CR_2 : T3=f(T1,CR_2)

    X-axis               1          T1                               1st point
                            2          T1                               2nd point
                            .
                            N         T1                               last point
     
    Y-axis               1          T3(CR_2)                    1st point
                            2          T3(CR_2)                    2nd point
                            .
                            N         T3(CR_2)                     last point

     

    Characteristic curve: Warm water (T3) Characteristic curve CT3_CR_3 : T3=f(T1,CR_3)

    X-axis               1          T1                               1st point
                            2          T1                               2nd point
                            .
                            N         T1                                last point
     
    Y-axis               1          T3(CR_3)                     1st point
                            2          T3(CR_3)                     2nd point
                            .
                            N         T3(CR_3)                     last point

     

    Characteristic curve: Warm water (T3) Characteristic curve CT3_CR_4 : T3=f(T1,CR_4)

    X-axis               1          T1                               1st point
                            2          T1                               2nd point
                            .
                            N         T1                                last point
                    Y-axis               1          T3(CR_4)                     1st point
                            2          T3(CR_4)                     2nd point
                            .
                            N         T3(CR_4)                      last point

     

    Characteristic curve: Warm water (T3) Characteristic curve CT3_CR_5 : T3=f(T1,CR_5)

    X-axis               1          T1                               1st point
                            2          T1                               2nd point
                            .
                            N         T1                                last point
                    Y-axis               1          T3(CR_5)                     1st point
                            2          T3(CR_5)                     2nd point
                            .
                            N         T3(CR_5)                     last point

     

    Characteristic curve: Warm water (T3) Characteristic curve CT3_CR_6 : T3=f(T1,CR_6)

    X-axis               1          T1                               1st point
                            2          T1                               2nd point
                            .
                            N         T1                               last point
                    Y-axis               1          T3(CR_6)                    1st point
                            2          T3(CR_6)                    2nd point
                            .
                            N         T3(CR_6)                     last point


    Physics Used

    Equations

    All cases

     

    Moisture

    ========

    MOL:=Molar mass

    Y1H2O = X1H2O*MOL1SUM/18.0152

    P1S   = fsat(T1)

    PHI1  = Y1H2O*P1/P1S

    LOAD = M3/M3N

    if (FMODE=2) then {

      off-design with Performance nomograph

    }

    if (GLOBAL = design and FMODE = GLOBAL), then {

      Design case

      LOAD=1

    }

     

    if (GLOBAL = off-design or FMODE=1), then {

      off-design with normalized Performance nomograph

    }

    Characteristic diagram interpolation

    ============================

    Interpolation moisture

    WW1 = f(T1) from characteristic curve 1 with PHI1_1

    WW2 = f(T1) from characteristic curve 2 with PHI1_2

    ZW = WW1+(PHI1-PHI1_1)/(PHI1_2-PHI1_1)*(WW2-WW1)

     

    Interpolation load

    WW1 = f(ZW) from characteristic curve 3 with LOAD_1

    WW2 = f(ZW) from characteristic curve 4 with LOAD_2

    ZW = WW1+(LOAD-LOAD_1)/(LOAD_2-LOAD_1)*(WW2-WW1)

     

    Interpolation warm water temperature

    WW1 = f(ZW) from characteristic curve 5 with CR_1

    WW2 = f(ZW) from characteristic curve 6 with CR_2

    WW3 = f(ZW) from characteristic curve 7 with CR_3

    WW4 = f(ZW) from characteristic curve 8 with CR_4

    WW5 = f(ZW) from characteristic curve 9 with CR_5

    WW6 = f(ZW) from characteristic curve 10 with CR_6

     

    if (T3 >= WW(I)  AND T3 < WW(I+1)), then {

      ZW =  (WW(I+1)-WW(I))

      CR = CR_(I)+[T3-WW(I)] / ZW * [CR_(I+1)-CR_(I) ]

    }

    T4-Calculation

    =================

    if (FMODE=2), then {

      T4 = T3-CR

    }

    else {

      if (GLOBAL = design and FMODE = GLOBAL), then {

        T4 = T4CN

        ZW    = T4N-T3N

        CCR  = ZW-CR }

      else {

        ZW    = CCR+CR

        T4 = T3-ZW }

    }

    State 4

    =======

    HX4  = f(P4,T4)

    HX6  = HX4

    Approximation state 2

    =====================

    FAC   = .8

    T2 = FAC*T3+(1-FAC)*T4

    P2S    = fsat(T2)

    Y2H2O   = P2S/P2

    XH2O = Y2H2O*18.0152/MOL1SUM

    DSR = XH2O-X1H2O

    MSM1     = M3*MSM3/M1

    M2M1   = 1+DSR+MSM1

    X2H2OG   = XH2O/M2M1

    ZW     = 1/M2M1

    X2H2OL = MSM1*ZW

    if ( i != H2O), then {

      X2i=X1i*ZW }

    HX2  = f(P2,T2)

    Calculation of M1

    =================

    H2_1  = f(P1,T2)

    H2_2  = f(P3,T2)

     

    if (FSPEC = 0), then {

      ZW = HX2_1-H1+DSR*(H2_2-H4)

      M1 = M3*(H3-H4)/ZW  }

    else {

      ZW = H2_1-H1+DSR*(H2_2-H4)

      MX1 = M3*(H3-H4)/ZW

    }

     

    Pressure equations

    =================

    F = (M3/M3N) ** 2

    DP34 = DP34N * F

    P4    = P3 - DP34                                                                   

    P2    = P1                                                                               

    P4    = P6                                                                               

    P4    = P5                                                                               

    Enthalpy equations

    ===================

    H2   = HX2                                                                             

    H4   = HX4                                                                             

    H6   = HX6                                                                             

     

     

     

    Mass flow equations

    ===================

     

    if FSPEC=0, then {

      M3 = M4  }                                                                           

    else {

      M3*(M6M3+MSM3)+DSR*M1 = M4                                   

    }

    M1 = MX1                                                                               

    M2 = M2M1*M1                                                                     

    M6 = M6M3*M3                                                                     

    if FSPEC=0, then {

      M5 = (M6M3+ MSM3)*M3+DSR*M1  }                               

    else {

      M5 = 0  }                                                                               

     

     


    Component Displays

    Display Option 1

    Example

    Click here >> Component 78 Demo << to load an example.