EBSILON®Professional Online Documentation
In This Topic
    Component 47: Wet Cooling Tower
    In This Topic

    Component 47: Wet Cooling Tower (with Klenke coefficients)


     

    Specifications

    Line connections

    1

    Air inlet

    2

    Air outlet

    3

    Cooling water inlet (warm water)

    4

    Cooling water outlet (cold water)

    5

    Make-Up water inlet

    6

    Blow down

     

    General       User Input Values       Characteristic Lines       Physics Used       Displays       Example

     

    General

    The component "wet cooling tower" simulates the operating performance of wet natural draft cooling towers under nominal and part-load conditions.  In the design mode, the user defines a desired cold water temperature and the cooling range is calculated, using the nominal values of the main boundary conditions

    In off-design mode, the cold water temperature is calculated as a function of the four main boundary conditions and a performance model developed by KLENKE (BWK, 18, 1966).

    To estimate cooling tower performance for natural draft and mechanical draft cooling towers applying performance rules defined in DIN 1947, use components 78 and 79.  

     Klenke Model

    The essential quantities of heat and mass flow can best be modelled by means of an h-x diagram for wet air. The following indices are used to identify the main streams:

    1   Air inlet

    2   Air outlet

    3   Warm water inlet

    4   Cold water outlet

    4id minimum possible (or ideal) cold water temperature

     

    Other mass flows used in the model are make-up water (M5) and blow down (M6), which are determined from the mass balance equation for water.  

    M3-M4 = M1*(X2H2O-X1H2O)   (1)
    M3*H3 - M4*H4 = M1*(H2-H1)    (2)

    with

    M3, M4 Water flow rate
    M1 Dry air flow rate
    X2H2O, X1H2O Water concentrations on a dry air basis.  
    H1, H2, H3, H4 Enthalpies

    Transformation of equation (1) and (2) results in the definition of the air-to-water ratio (L)

    L = M1/M3 = (H3-H4)/(H2-H1 - H4*(X2H2O-X1H2O)   (3)

    The KLENKE model suggests a description of the cooling tower performance with a single characteristic curve.  This characteristic curve correlates the cooling tower effectiveness with the relative air-to-water ratio.  The cooling tower effectiveness (α) is defined as the ratio of the actual cooling range to the “ideal” cooling range.  The relative air-to-water ratio is defined as the ratio of the actual air-to-water ratio (L) over the “ideal” air-to-water ratio (Lid).  

    Dependent Variable (y-Axis): α = (T3-T4)/(T3-T4id)   (4)

    Independent Variable (x- Axis): β = L/Lid   (5)

    The ideal air-to-water ratio can easily be calculated from equation (3) by using “ideal” conditions for state point 4.  

    Normally, cooling tower performance needs to be described by a characteristic performance map containing multiple characteristic curves.  KLENKE showed in his work that under the condition of a constant ratio of the total mass transfer surface area (surface of all droplets) over the water flow rate a single characteristic curve is sufficient to describe the cooling tower performance.  

    For simulating the operating performance, it is useful to normalize the characteristic curve around the nominal load point (design case), i.e. use it in terms of α/αN and β/βN.  

    To describe the design case completely, an input must be provided for the air-to-water ratio (M1/M3) in addition to the four main input parameters.  A value of 0.7 is common for natural draft cooling towers.  

    The calculation of the design case is carried out in the following steps

    Input:

    Calculation:

    T4id   (iteration)
    T2, X2 from balance equations   (iteration)
    (M1/M3)id
    αN, βN

    The off-design calculation is done as follows:

    Input:

    Calculation:

    T4id
    M1 by iteration from the cooling tower draft (stack draft)
    T2, X2 (iteration)
    (M1/M3)id
    β from M1 and M3
    β/βN and determination of α/αN from the characteristic line
    T4 from α/αN and T3 - T4id


     

    User Input Values

    M1M3N

    Air-to-Water Ratio (nominal)

    M1N/M3N

                   

     

    T4N

    Temperature of cooling water outlet (nominal)

    T1

    Temperature of air inlet

    PHI1

    Inlet Air Humidity

    PHI=Pwater / Psat(T)

    MSM3

    Drift loss fraction MSpray/M3

    M6M3

    Blow down mass flow M6/M3

    DP34N

    Pressure loss (nominal)

    CC1

    Characteristic lines coefficient 1

    CC2

    Characteristic lines coefficient 2

    CC3

    Characteristic lines coefficient 3

    FMODE

    Flag for calculation mode

    Like in Parent Profile (Sub Profile option only)

    Expression

    =0: Circulation

    =0: Global

    =1: local off-design

    FSPEC

    Make-Up Mode

    Like in Parent Profile (Sub Profile option only)

    Expression

    =0: Circulation mode
    M3=M4 and M5=M2-M1+M6

    =1: Discharge operation (zero Make-Up)
    M4=M3-(M2-M1+M6)
    M5=0

    DT34N         

    Cooling range (nominal)

    DT34N=(T3-T4)N

    T1N              

    Inlet Air Temperature (nominal)

    PHI1N          

    Inlet Air humidity (nominal)

    M3N             

    Cooling water mass flow (nominal)

    The parameters marked in blue are reference quantities for the off-design mode. The actual off-design values refer to these quantities in the equations used.

    Generally, all inputs that are visible are required. But, often default values are provided.

    For more information on colour of the input fields and their descriptions see Edit Component\Specification values

    For more information on design vs. off-design and nominal values see General\Accept Nominal values


    Characteristic Lines

    DTTID = T3-T4id

    DTTNID  =  T3N-T4Nid

    DTTNR = DTTN/DTTNID

    M1M3NR = M1M3N/M1M3NID

    DTTVV = M1M3/M1M3ID/M1M3NR

    Characteristic line (DTTVV):

    ZW =(DTTV+CC1*(DTTVV^0.3-DTTVV)+CC2*(DTTVV^1.3-DTTVV^2) )* (1+CC3*(T1-T1N)*0.01)

    DTT   = ZW*DTTID*DTTNR

    T4  = T3-DTT


    Physics Used

    Equations

    All cases

     

    M1M3=M1/M3

    DTTN=DT34N

    Pre-calculation
    ==============

    if GLOBAL = off-design

    or iteration > 15,  then {calculation of off-design}

    H1N = H1

    if GLOBAL = Design, then {

      T3N = f (P3, H3)

      DTTN= T3N-T4N

      H3N = H3}

    else {

      T3N = T4N+DTTN

      H3N = f (P3, T3N)

    }

     

    CALL Humidity (PHI1N,T1N,P1,X1i)

    T4Nid = T_LIMIT (PHI1N,T1N,P1,X1i)

    H4N   = f (P4,T4N)

    INDI  = 0

    H2N   = H2_M1M3(PHI1N, T1N, P1N, H1N, X1i, T3N, P3, H3N, T4N, P4, H4N,
                  M1M3ID, M1M3N, M1M3NR, M1M3, DTTN, DTT, DTTNR, INDI)

    M1M3NID= M1M3_ID (T1N, T3N, H1N, H3N, T4Nid, X1i, X2i)

    Reference values of characteristic lines {

             DTTNID  =  T3N-T4Nid

             DTTNR = DTTN/DTTNID

             M1M3NR = M1M3N/M1M3NID

    }

    Assignments {

             H1X = H1N

             H2X = H2N

             H4X = H4N

             H6X = H4N

             DTT = DTTN

             M1M3 = M1M3N

    }

     Calculation of partial load

     ==========================

     T3 = f (P3,H3)

    CALL Humidity (PHI1,T1,P1,X1i)

    T4id  = T_LIMIT (PHI1,T1,P1,X1I)

    DTTID = T3-T4id

    M1M3ID = M1M3_ID (T1, T3, H1, H3, T4id, X1I, GEW2)

    INDI  = 2

    H2N  = H2_M1M3(PHI1N, T1, P1, H1, X1I, T3, P3, H3, T4, P4, H4,
                 M1M3ID, M1M3N, M1M3NR, M1M3, DTTID, DTT, DTTNR, INDI)

     Assignments {

             H1X = H1

             H2X = H2

             H4X = H4

             H6X = H4

             DTT = T3-T4

    }

     Equations for pressure

    ========================

    F     = 1.0

    F     = (M3/M3N) ** 2    at MODE = 1

    DP34 = DP34N * F

    P4    = P3 - DP34                                    

    P2    = P1                                               

    P4    = P6                                               

    P4    = P5                                                

     

    Equations for enthalpy

    =======================

    H1   = HX1                                              

    H2   = HX2                                              

    H4   = HX4                                               

    H6   = HX6                                              

     

    Equations for mass flow

    =========================

     

    ZWG = (X2H2O-X1H2O)*M1M3

     

    if FSPEC = 0, then {

      M3 = M4       }                                        

    , else {

      M3*(M6M3+ZWG+MSM3) = M4          

      }

    M1 = M1M3*M3                                      

    M2 = (1+(ZWG+MSM3)/M1M3)*M1       

    M6 = M6M3*M3                                      

    if FSPEC=0, then {

      M5 = (M6M3+ZWG+MSM3)*M3    }     

    else {

      M5 = 0   }                                               

    °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

                                Subroutine Humidity

    Determine water mass concentration at given pressure,
    temperature, and relative humidity

    °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

    Humidity (PHI,T,P,X)

    =====================

    PS  = Psat(t)

    PH2O= PS * PHI

    YH2O= PH2O/P

    XH2O= YH2O*MolH2O/MolSUM

    °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

                               Subroutine T_LIMIT

    Calculation of the wet bulb temperature at given system
    pressure, temperature, and relative humidity

    °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

    T_LIMIT (PHI,T,P,Xi)

    ===================

    H     = f (P,T,Xi)

    TLIM  = T

    XLIM_H2O_G= f (P,TLIM)             (maximum steam portion)

    XLIM_H2O  = XLIM_H2O_G

     

    Iteration{ 

      DH2O = (MLIM_H2O-M1H2O)/M1

      DH2O = (XLIM_H2O-X1H2O)/(1.0-XLIM_H2O)

      HLIM= H1+DH2O*(CPWater*TLIM-LH2O)       

      LH2O=latent heat in water

      TLIM= f (HLIM,P)

      XLIM_H2O_L=f (P,TLIM)              (maximum water portion)

      if XLIM_H2O_L >0 then {

        XLIM_H2O_G = XLIM_H2O_G-XLIM_H2O_L  }

      else {

        XLIM_H2O_G = f (P,TLIM)  (maximum  steam portion)  }

     

      XLIM_H2O  = XLIM_H2O_G

    End of the iteration

    T_LIMIT = TLIM

    °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

                               Subroutine H2_M1M3

    Calculation of the enthalpy of the cooling tower outlet at
    given M1/M3 and given thermodynamic state at the
    points 1, 3 and 4

    °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

    H2_M1M3 (PHI1,T1,P1,H1,X1i,T3,P3,H3,T4,P4,H4,
                    M1M3ID,M1M3N,M1M3NR,M1M3,DTTN,DTT,DTTNR,INDI)

     

    T2 = T3

    START of the iteration {

      CALL humidity (PHI=1,T2,P2=P1,X1i)

      if INDI=0, then {

        M1M3 = M1M3N    (= Ratio M1/M3)  }

      else {

        M1M3 from M1M3N, DENSITY12 , DENSITY12N and

        fireplace formula 

        Characteristic line

        DTTVV = M1M3/M1M3ID/M1M3NR

        ZW = Characteristic line (DTTVV)

        ZW =(DTTV+CC1*(DTTVV^0.3-DTTVV)

              +CC2*(DTTVV^1.3-DTTVV^2) )* (1+CC3*(T1-T1N)*0.01)

        DTT   = ZW*DTTID*DTTNR

        T4  = T3-DTT

        H4  = f (P4,T4)

        }   

      Energy balance of the cooling tower

      ZW2 = (X2H2O-X1H2O)/(1-X2H2O)

      H2 = (H1+(H3-H4)/M1M3+(H4-LH2O)*ZW2)/(1-ZW2)

      T2 = f (H2,P2)

    } End of the iteration

    H2_M1M3 = H2

    °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

                               Subroutine M1M3_ID

    Calculation of the minimal air-to-water ratio M1/M3id for
    ideal cooling tower conditions
    (i.e. T4=T4_LIMIT, T4=T1 Wet Bulb)

    °°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°

    M1M3_ID (T1id,T3id,H1,H3,T4_LIMIT,X1i,X2i)

    T4id = T4_LIMIT

    T2id = T3id

    H1id = H1

    H3id = H3

    H2id = f (P2,T2id)

    H4id = f (P2,T2id)

    Energy balance of the cooling tower

    ZW     = (X2_H2O-X1_H2O)/(1-X2_H2O)

    M1M3_id = (H3id-H4id)/(H2id-H1id-(H4id-LH2O-H2id)*ZW)

     

     

    Component Displays

    Display Option 1

    Example

    Click here >> Component 47 Demo << to load an example.