EBSILON®Professional Online Documentation
In This Topic
    Component 104: Coupled rectifying column
    In This Topic

    Component 104: Coupled rectifying column


    Specifications

    Line connections

    1

    Inlet

    2

    Steam Outlet (rich in cooling-medium)

    3

    Fluid Outlet (poor in cooling-medium)

    4

    Added Heat in Expeller

    5

    Extracted Heat in Dephlegmator

     

    General       User Input Values       Physics Used       Displays       Example

     

    General

    This component serves to reclaim the cooling agent from the solution rich in cooling agent coming from the absorber. The solution is fed from the side. Thereby, the fluid flows down via several intermediate bottoms. This area is called the extractor. Heat is fed bottom-up and brings the fluid to the boil. Here the fact is utilized that at first mainly the cooling agent will vaporize. It will rise up and sparkle through the intermediate bottoms, whereupon an equilibrium is reached in each bottom. This way, the gaseous cooling agent accumulates to the top and the solvent accumulates downward. The area above the injection is called the dephlegmator.

    The extractor temperature can be fixed in the specification value T3, but it can also be calculated using a kernel expression ET3.
    Flag FT3 has to be used to set whether T3 or ET3 is to be used.

     


    User Input Values

    XI2

    Target refrigerant content in vapour outlet 

    EFF

    Rectifier efficiency 

    FT3

    Method for specification of generator outlet temperature

    Like in Parent Profile (Sub Profile option only)

    Expression

    =0: By specification value T3

    =1: by Kernel Expression ET3

    T3 

    Generator outlet temperature 

    ET3 

    By Kernel expression ET3

    function evalexpr:REAL;

    // result must in °C

    begin

      evalexpr:=95.0;

    end;

    Generally, all inputs that are visible are required. But, often default values are provided.

    For more information on colour of the input fields and their descriptions see Edit Component\Specification values

    For more information on design vs. off-design and nominal values see General\Accept Nominal values

    Results

    HDPH

    (hypothetical) Dephlegmator pole (actual value) 

    HDPHMIN

    Dephlegmator pole (theoretical minimum) 

    HGEN

    Generator pole 

    DHDPH

    Specific dephlegmation heat (actual value) 

    DHDPHMIN

    Specific dephlegmation heat (theoretical minimum)   

    DHGEN

    Specific generator heat

    T3MIN

    Theoretical minimum for generator temperature

     

    Physics Used

    Equations

    All cases

     

    The share of refrigerant of the liquid discharged on boiling conditions at given temperature T3:
    XI3 = f(P3, T3)  

    Splitting ratios:
    M2M1=(XI1-XI3)/(XI2-XI3)
    M3M1=1 - M2M1

    M3 - M3M1 * M1 = 0                                          (1)
    M2 - M2M1 * M1 = 0                                          (2)
    M5 = 1 (dummy value)                                           (3) 

    P1 - P2  = 0                                                         (4)
    P1 - P3  = 0                                                         (5)
    P5 = 0.01 (Dummy value)                                        (6)

    for FBIN = NH3/H2O:

      Gas emerging mixture is under saturated steam conditions
                        
      H2 = f(P2)                                                       (7)

    for FBIN = H2O/LiBr:

      Outlet temperature is equal to the   desorbers temperature:
      H2 = f(P2, T3)                                                   (7) 

    H3 = f(P3, T3)                                              

    for FBIN = NH3/H2O:

      Calculation of the specific dephlegmator heat:

      Case 1: Entry is  still sub cooled

       HA = H'(P1,XI1)           boiling enthalpy
       HB = H_aux(P1,XI1)    auxiliary lines enthalpy in the h,xi-Diagram
       XIA = XI1                    Refrigerant fraction at the inlet
       XIB = XI"(P1,XIA)         XI the vapour phase

      Case 2: Entry is wet steam (2-phase mixture)

       T1 = f(P1,H1)               temperature wet steam isotherm
       XIA = XI'(P1,T1)           XI  of the liquid
                                           starting point wet steam isotherm
       XIB = XI"(P1,T1)           XI the vapour phase=
                                           endpoint wet steam isotherm
       HA = H'(P1,XIA)           boiling enthalpy
       HB = H_aux(P1,XIA)     auxiliary lines enthalpy in the h,xi-Diagram

     HDPHMIN = HA+(HB-HA)/(XIB-XIA)*(XI2-XIA)
     DHDPHMIN=HDPHMIN-H2
     DHDPH=DHDPHMIN/EFF

    for FBIN = H2O/LiBr:
      DHDPH = 0 

    H5 = DH_DPH * M2                                          (9)

    -M1*H1+M2*H2+M3*H3-M4*H4+M5*H5=0   (10) 

     

     

    Component Displays

    Display Option 1

     

    Example

    Click here >> Component 104 Demo << to load an example.