EBSILON®Professional Online Documentation
Calculations / Basis of Calculation / Turbines - OffDesign - Stodola
In This Topic
    Turbines - OffDesign - Stodola
    In This Topic

    Part-load Calculation of Turbine


    Off-Design Components 6, 56, 58

    EBSILON®Professional uses the Stodola’s law of the ellipse, a summary of which is given below.

    For an uncontrolled multistage expansion till a high vacuum, it is normal that at any point in the expansion downstream the pressure-flow rate ratio relation can be approximated for each expansion point

     

    PHI=Mi / SQRT(Pi / Vi)=const                              with i = Expansion point

     

    PHI is set as


           PHI=SQRT(1-( POUTj / PINj )**2)                       with j = Extraction group


    according to Stodola Ellipse. With Pi=PINj=P1 and POUTj=P2 the result is


         M1**2=(P1**2-P2**2) / (P1*V1)

     

    For the comparison of the design and the off-design case, we get

        

         (M1 / M1N) **2 =  (P1**2 - P2**2) / (P1N**2 - P2N**2) * (P1N * V1N) / (P1*V1)

     

    M - mass flow

    P - pressure

    V - specific volume

    index 1: inlet 

    index 2: output

    index N: nominal value from design calculation

    Umgewandelt ergibt sich:

     

       M1 = S * SQRT ( P1**2 - P2**2 ) / ( P1 * V1 )     (1)   with

     

           S =  M1N * SQRT ( P1N * V1N)    /   SQRT  ( P1N**2 - P2N**2 )

     

    The coefficient S of the turbine is determined during the design calculation. Sometimes it is also referred to as the "swallowing capacity" of a turbine.

    Converted, the result is:

     

          P1  =  SQRT ( P2**2 + (  (M1 / S)**2 * P1 * V1 ) )

     

    This equation is solved iteratively and applies to components 6, 56 and 58.

    It is valid for real and ideal gases, for steam and wet steam.

      

    Off-Design Component 122

    Component 122 uses an improved version of equation (1) recommended by Traupel.


     M1 = S * SQRT (  P1 * V1 )  * SQRT ( 1 -  (P2/P1) ** ((n+1)/n) )     (2)   with

     

      S =  M1N * SQRT ( P1N * V1N)    /   SQRT  ( 1 -  (P2N/P1N) ** ((n+1)/n) ) 

     

    with n: Polytropic exponent   n  = kappa / (  kappa- etap * (kappa - 1)  )

     

    with

    kappa: Isentropic exponent

    etap: Polytropic efficiency of the turbine

     

    Equation (1) is a special case of equation (2) when the polytropic exponent n becomes 1.