EBSILON®Professional Online Documentation
In This Topic
    Component 129: lignite mill
    In This Topic

    Component 129: lignite mill / pulverizer


    Specifications

    Line connections

    1

    Hot drying gas inlet 1

    2

    Outlet

    3

    Cooling drying gas inlet 2

    4

    Fuel inlet

    5

    Sealing air inlet

    6

    Air ingress inlet

    7

    Electric power inlet

    8

    Drying gas mixing specification

    9

    Specification TCLASS and MOUTGAS

    10

    Specification of the mill rotation speed

     

    General       User Input Values       Results       Characteristic lines       Physics used       Displays       Example

     

    General

    Component 129 is intended for the thermodynamic balancing of a lignite coal mill (pulverizer) with coal grinding and drying process considered. It can be used for the modeling of a beater wheel mill.

    The raw coal (specified at PIN 4) is grinded within the mill. The electric power (specified at PIN 6) is used to move the milling plant. The coal dust contacts the mixture of the hot (PIN 1) (normally flue gas) and the cool (PIN 3) drying gas (normally air) and is, therefore, dried (a certain fraction of water in coal evaporates).  Finally, the mixture of dried and grinded coal, water steam and drying gas exits the component at PIN 2. In real mills / pulverizers the dust particles are classified by a classifier. The coarse particles are returned to further grinding building an internal circulation within the mill. This circulation is, however, neglected in the stationary computations of component 129. The exactly closed mass balance is presumed. I.e.  the sum of all incoming mass flows is equal the mass flow at the outlet (PIN 2).

    The mixing temperature of the drying gas 1 and 2 as well as the mass flow of that can be specified at the logical PIN 8.

    The PIN 5 is used for the specification of the sealing air fraction penetrating into the component.

    The air ingress into the component from the outside is introduced at PIN 6. The penetrating air fraction regarding to the overall gas mass flow at mill outlet can be specified in MIA. The value of MIATMIX corresponds to the penetrating air fraction relevant to the mixing temperature T8.

    The component assumes that the raw coal water content corresponds to the value of XH2OB at PIN 4. It is therefore expected that the user specifies only solid material fractions at PIN 4 (no gas or liquid substances make sense). The specified residual water content (RXH2OB) is interpreted also as  XH2OB fraction regarding to the solid phase composition at PIN 2 (not regarding to the overall composition at PIN 2!). Thereby the complete solid phase at PIN 2 is taken as a basis for the  residual water content without distinguishing between the fine coal and e.g. the ash or unburnt carbon fractions coming with the drying gas into the mill.

    Important. There is a deviation from the thermodynamic equilibrium state between the fine coal residual water content and the gas phase at the outlet of the real coal mill. The water in grains remains in the liquid phase although the temperature of gas is higher than the water saturation temperature. The classifier temperature TCLASS is therefore specified at the logical PIN 9. The gas phase at the outlet is assumed to be at T=TCLASS. The temperature of the mixture (gas and solid phase) at PIN 2 may therefore deviate (be less than) from TCLASS depending on the residual water content of the fine coal. The computed temperature T2 is only a theoretical temperature corresponding to the thermodynamic equilibrium state which can not be measured in the real coal mill. The temperature T2 should not be compared to any measured value (e.g. classifier temperature). TCLASS=T9 must be used instead. The classifier temperature computed from the energy balance is available as result value RTCLASS. The outlet temperature T2 corresponding to the desired classifier temperature is available as result value T2FTCL.

     

    Note - Characteristic Lines Related to Nominal Temperature

    For the component 129 there is a characteristic line CL_12which refers to a nominal value of temperature. This is the characteristic line CL_12 for the residual water content of fine coal , which provides the ratio TCLASS / TCLASSN.

    Unfortunately, such temperature ratios depend on the selected system of units. In contrast to other units where the conversion is effected only via a certain factor and therefore has no effects on the quotient, in the temperature conversion there is an additive offset whereby the value of the quotient changes.

    There is the possibility to specify this characteristic line in other units (°F, K).

    Users who prefer other unit systems for the temperature (eg ° F, K) must set the selected temperature unit in the new flag FTNI, because Ebsilon calculates internally with the temperature unit ° C.

     

    Relative heat loss (DQLR) / Load-independent heat loss (QLA)

    In the case of the component 129, a relative heat loss can be specified via the specification value DQLR.

    In practice, however, the temperature conditions for the mill change only slightly with the load, so that a load-independent heat loss occurs. This can be specified via the specification value QLA. The flag FLOSS serves to define whether the relative or the absolute loss is to be used.

     


    User input values

    FFU

     

    Mill ON/OFF

    Like in Parent Profile (Sub profile option only)
    Expression

    =0: OFF (If FFU=0, all inlet mass flows and enthalpies are expected to be specified, consequently, the values of FTMIX, FMOUTGAS, FCM and FCMEB are of no 
          relevance)

    =1: ON

    FMODE

     

    Flag for calculation mode Design / Off-design

    Like in Parent Profile (Sub profile option only)
    Expression

    =0: global

    =1: local off-design (i.e. always off-design, even if global design mode was selected)

    =-1:local design

    FDP12

     

    Pressure build-up calculation (hot side)

    Like in Parent Profile (Sub profile option only)
    Expression

    =0: using DP12N and characteristic field 1

    =1: P2 given from outside

    DP12N

    Pressure build-up (nominal)

    FTMIX

     

    Mixing temperature TMIX13 specification

    Like in Parent Profile (Sub profile option only)
    Expression

    =0: computed internally

    =1: externally at PIN 8

    FMOUTGAS

     

    Outlet gas mass flow specification MOUTGAS

    Like in Parent Profile (Sub profile option only)
    Expression

    =0: computed internally

    =1: externally at PIN 9

    FCM

    Specification gas mass flows

    Like in Parent Profile (Sub profile option only)
    Expression

    =1: MOUTGAS AND MIA specified, M1 AND M3 calculated

    =2: MOUTGAS AND M3 specified, M1 AND M6 calculated

    =3: MOUTGAS AND M6 specified, M1 AND M3 calculated

    =4: MOUTGAS AND M1 specified, M3 AND M6 calculated

    =5: M1, M3 AND M6 specified (not for FCMEB=0!)

    FCMEB

    Mass and energy balance treatment

    Like in Parent Profile (Sub profile option only)
    Expression

    =0: TCLASS given

    =1: All inlet conditions given, T2/TCLASS calculated

    FQEL

    Electric power specification

    Like in Parent Profile (Sub profile option only)
    Expression

    =0: Calculated by Q7N and Characteristic line Q7/Q7N=f(M4/M4N)

    =1: externally (PIN 7)

    MQEL

    Fraction of el. power converted to heat

    MIA

    Fraction of penetrating air on MOUTGAS

    MIATMIX

    Fraction of penetrating air relevant for TMIX136 (T8)

    FLOSS

    Specification of heat losses

    Like in Parent Profile (Sub profile option only)
    Expression

    =0: Specification by DQLR

    =1: Specification by QLA

    DQLR

    Heat loss (relative)

    QLA

    Heat loss (absolute)

    FREV

     

    Mill rotation speed specification

    Like in Parent Profile (Sub profile option only)
    Expression

    =0: from characteristic line REV/REVN=f(M4/M4N)

    =1: externally (PIN 10)

    RXH2OBN

    Residual water content of fine coal nominal

    FTNI

     


    Unit used for calculation of TCLASS/TCLASSN in CL_12

    Like in Parent Profile (Sub profile option only)
    Expression

    =0: Celsius
    =1: Fahrenheit
    =2: Kelvin

    MOUTGASN

    Gas mass flow at outlet (nominal)

    VOUTGASN

    Gas volume flow at outlet (nominal)

    TCLASSN

    Classifier temperature (nominal)

     

    M4N

     

    Raw coal mass flow (nominal)

    Q7N

    Electric power (nominal)

     

    REVN

     

    Mill rotation speed (nominal)

    The parameters marked in blue are reference parameters for off-design, which are calculated by Ebsilon in the design mode. The actual off-design values refer to these parameters in the equations used.

     

     

    Allowed combinations of flags

    FCM 1 2 3 4 5
    FCMEB
    0 Yes (FTMIX=0) Yes (FTMIX=0) Yes (FTMIX=0) Yes (FTMIX=0) No
    1 Yes (FTMIX=1) Yes (FTMIX=1) Yes (FTMIX=1) Yes (FTMIX=1) Yes (FTMIX=0)

    Results

    CWCB4

    Computed minimal raw coal XH2OB value expected due to RXH2OB specification

    CWCB4DIFF

    Difference of CWCB4 to the spec. raw coal XH2OB value at PIN 4

    DP12

    Pressure build-up

    DP12R

    Reference pressure build-up

    Q7CL

    Electric power from characteristic line

    RXH2OB

    computed residual water content of fine coal

    MOUTGAS

    Outlet gas mass flow

    MOUTGASCL

    Outlet gas mass flow from characteristic line

    VOUTGAS

    Outlet gas volume flow

    QLOSS

    Heat losses

    REVCL

    Mill rotation speed from characteristic line

    QT

    Heat transferred from drying gas to coal

    MOMON

    Relative outlet gas mass flow

    VOVON

    Relative outlet gas volume flow

    M4M4N

    Relative fuel mass flow

    TCTCN

    Relative classifier temperature

    REVREVN

    Relative mill rotation speed

    RTCLASS

    Computed classifier temperature

    T2FTCL

    Thermodynamic equilibrium outlet temperature T2 for desired classifier temperature


    Characteristic lines

    Char. lines 1 to 10: Pressure build-up   DP12/DP12N = f (VOUTGAS/VOUTGASN) for different REV/REVN

         X-Axis       1         VOUTGAS/VOUTGASN          1. point
                          2         VOUTGAS/VOUTGASN          2. point
                            .
                          N         VOUTGAS/VOUTGASN         last point
     
         Y-Axis       1          DP12/DP12N                        1. point
                          2          DP12/DP12N                        2. point
                          .
                          N         DP12/DP12N                        last point

    Char. line 11: Electric power Q7/Q7N = f(M4/M4N)

         X-Axis     1        M4/M4N                                 1. point
                        2        M4/M4N                                 2. point
                        .
                        N        M4/M4N                                last point
     
         Y-axis      1        Q7/Q7N                                 1. point
                        2        Q7/Q7N                                 2. point
                        .
                        N        Q7/Q7N                                 last point
     

    Char. line 12: Water content of fine coal RXH2OB/RXH2OBN = f(TCLASS/TCLASSN)

         X-Axis     1        TCLASS/TCLASSN                   1. point
                        2        TCLASS/TCLASSN                   2. point
                        .
                        N        TCLASS/TCLASSN                  last point
     
         Y-axis      1        RXH2OB/RXH2OBN                1. point
                        2        RXH2OB/RXH2OBN                2. point
                        .
                        N        RXH2OB/RXH2OBN               last point
     

    Char. line 13: Gas mass flow MOUTGAS/MOUTGASN = f(REV/REVN)

         X-Axis     1        REV/REVN                               1. point
                        2        REV/REVN                               2. point
                        .
                        N        REV/REVN                              last point
     
         Y-axis      1        MOUTGAS/MOUTGASN         1. point
                        2        MOUTGAS/MOUTGASN         2. point
                        .
                        N        MOUTGAS/MOUTGASN        last point
     

    Char. line 14: Rotation speed REV/REVN = f(M4/M4N)

         X-Axis     1        M4/M4N                              1. point
                        2        M4/M4N                              2. point
                        .
                        N        M4/M4N                             last point
     
         Y-axis      1        REV/REVN                           1. point
                        2        REV/REVN                           2. point
                        .
                        N        REV/REVN                          last point
     


    Physics used

    Equations

    FFU=1

     

    MF2 - mass flow fine coal at outlet
    MH2O2 - mass flow of water steam at outlet
    QFM2 = Q((M1+M3+M5+M6), TCLASS) – heat of gas at outlet
    HH2ODAMPF(TCLASS) - enthalpy water steam for T=TCLASS
    HF2 = HCoal(P2,TVIRT, RXH2OB) – enthalpy fine coal with residual water content RXH2OB at TVIRT, P2
    TVIRT - temperature at which the water in coal remains to be in the liquid phase at P2 
    COMP2 - composition at outlet 2 

    FMODE=0:
    {
       If FDP12=0
            DP12 = DP12N                                                               
        If FDP12=-1
            DP12 = P1 – P2

        Q7CL = Q7N
        RXH2OB = RXH2OBN
        MOUTGASCL = MOUTGASN     
        REVCL = REVN     
    }

    FMODE=1:
    {
        If FDP12 = 0
             DP12 = f(Char.lines 1-10)*DP12N
        If FDP12=-1
             DP12 = P1 – P2

        Q7CL = f(Char.line 11) * Q7N
        RXH2OB = f(Char.line 12) * RXH2OBN
        MOUTGASCL = f(Char.line 13) * MOUTGASN
        REVCL = f(Char.line 14) * REVN
    }

    P1 - P2 = DP12                                                                              (1)

    If FMOUTGAS=0
        MOUTGAS = MOUTGASCL
    If FMOUTGAS=1
        MOUTGAS = M9

    If FTMIX = 1
        TMIX136 = T8 
        HMIX136 = f(TMIX136) mixing enthalpy

    All FMODE

        M2 = M1 + M3 + M4 + M5+M6                                               (2)
        M9 = MOUTGAS                                                                      (3)
        If FQEL=0
           QEL = Q7CL                                                                          (4)
        If FQEL=1
            QEL = Q7
        QGRIND = QEL*MQEL 
        QLOSS = DQLOSS*(Q1+Q3+Q4+Q5+Q6+QGRIND)
        MMIX136 = M1+M3+ MIATMIX*M6                                         
        HMIX136 = (M1*H1 + M3*H3 + MIATMIX*M6*H6) / MMIX136    

    If FCM = 1
        M6 = MIA*MOUTGAS                                                              (5) 
        M1*H1 + M3*H3 = MMIX136*HMIX136- MIATMIX*M6*H6          (6)
        M1 + M3 = MMIX136 - MIATMIX*M6                                       (7)
    If FCM = 2
        M1*H1 + MIATMIX*M6*H6 = MMIX136*HMIX136- M3*H3          (8)
        M1 + MIATMIX*M6 = MMIX136 - M6                                       (9)  
    If FCM = 3
        M1 and M3 computed from (6) and (7)
    If FCM = 4
        M3*H3 + MIATMIX*M6*H6 = MMIX136*HMIX136- M1*H1         (10)
        M3 + MIATMIX*M6 = MMIX136 – M1                                      (11)


    If FCMEB = 0 
        QT = HF2*MF2 + MH2O2 * HH2ODAMPF(TCLASS)-Q4
        QMIX136 = QT – QGRIND – Q5 + QFM2 + QLOSS – (1-MIATMIX)*Q6
        HMIX136 = QMIX136 / MMIX136
        TCLASS = H8
        H2 = f(P2, TCLASS, TVIRT, COMP2)                                            (12)
        T2 = f(P2,H2,COMP2) 
    If FCMEB = 2 
        H2 = (Q1+Q3+Q4+Q5+Q6+QGRIND-QLOSS) / M2                    (13)
        Composition at outlet without residual water content of fine coal:
        COMPVIRT = COMP2 – f(RXH2OB)
        corresponding enthalpy:
        H2VIRT = (Q1+Q3+Q4-QF2+Q5+Q6+QGRIND-QLOSS) / (M2-MF2)
        TCLASS = f(H2VIRT, P2, COMPVIRT)
        H9 = TCLASS                                                                           (14) 

    Component displays

    Display option 1

    Example

    Click here >> Component 129 Demo << to load an example.