EBSILON®Professional Online Documentation
In This Topic
    Component 128: hard-coal mill
    In This Topic

    Component 128: hard-coal mill / Pulverizer


    Specifications

    Line connections

    1

    Hot drying gas inlet 1

    2

    Main outlet (fine coal and carrier medium)

    3

    Cooling drying gas inlet 2

    4

    Fuel inlet

    5

    Sealing air inlet

    6

    Electric power inlet

    7

    Drying gas mixing

    8

    Classifier temperature

    9

    Raw fuel water content

     

    General       User Input Values       Results       Characteristic lines       Physics used       Displays       Example

     

    General

    Component 128 is intended for the thermodynamic balancing of a hard coal mill (pulverizer) with coal grinding and drying process considered. It can be used for the modeling of a bowl mill.

    The raw coal (specified at PIN 4) is grinded within the mill. The electric power (specified at PIN 6) is used to move the milling plant. The coal dust contacts the mixture of the hot (PIN 1) and the cool (PIN 3) drying gas (normally air) and is, therefore, dried (a certain fraction of water in coal evaporates).  Finally, the mixture of dried and grinded coal, water steam and drying gas exits the component at PIN 2. In real mills / pulverizers the dust particles are classified by a classifier. The coarse particles are returned to further grinding building an internal circulation within the mill. This circulation is, however, neglected in the stationary computations of component 128. The exactly closed mass balance is presumed. I.e.  the sum of all incoming mass flows is equal the mass flow at the outlet (PIN 2).

    The mixing temperature of the drying gas 1 and 2 as well as the mass flow of that can be specified at the logical PIN 7.

    The PIN 5 is used for the specification of the sealing air fraction penetrating into the component.

    The computed raw coal water content is available at the logical PIN 9. The user can use that within the simulation e.g. for a controller or a value transmitter component.

    The component assumes that the raw coal water content corresponds to the value of XH2OB at PIN 4. It is therefore expected that the user specifies only solid material fractions at PIN 4 (no gas or liquid substances make sense). The specified residual water content (RXH2OB) is interpreted also as  XH2OB fraction regarding to the solid phase composition at PIN 2 (not regarding to the overall composition at PIN 2!). Thereby the complete solid phase at PIN 2 is taken as a basis for the  residual water content without distinguishing between the fine coal and e.g. the ash or unburnt carbon fractions coming with the drying gas into the mill.

    Important. There is a deviation from the thermodynamic equilibrium state between the fine coal residual water content and the gas phase at the outlet of the real coal mill. The water in grains remains in the liquid phase although the temperature of gas is higher than the water saturation temperature. The classifier temperature TCLASS is therefore specified at the logical PIN 9. The gas phase at the outlet is assumed to be at T=TCLASS. The temperature of the mixture (gas and solid phase) at PIN 2 may therefore deviate (be less than) from TCLASS depending on the residual water content of the fine coal. The computed temperature T2 is only a theoretical temperature corresponding to the thermodynamic equilibrium state which can not be measured in the real coal mill. The temperature T2 should not be compared to any measured value (e.g. classifier temperature). TCLASS=T9 must be used instead. The classifier temperature computed from the energy balance is available as result value RTCLASS. The outlet temperature T2 corresponding to the desired classifier temperature is available as result value T2FTCL.

    In some cases when the classifier temperature is too low and / or the raw fuel water content is too high the specified residual water content of the fine fuel can lead to condensed water fraction XH2OL at mill outlet. To avoid it the residual water content of the fine fuel is increased in the calculation and the corresponding warning is generated. 

    Note - Characteristic Lines Related to Nominal Temperature

    For the component 128 there is a characteristic line CL_12which refers to a nominal value of temperature. This is the characteristic line CL_12 for the residual water content of fine coal , which provides the ratio TCLASS / TCLASSN.

    Unfortunately, such temperature ratios depend on the selected system of units. In contrast to other units where the conversion is effected only via a certain factor and therefore has no effects on the quotient, in the temperature conversion there is an additive offset whereby the value of the quotient changes.

    There is the possibility to specify this characteristic line in other units (°F, K).

    Users who prefer other unit systems for the temperature (eg ° F, K) must set the selected temperature unit in the new flag FTNI, because Ebsilon calculates internally with the temperature unit ° C.

     

    Relative heat loss (DQLR) / Load-independent heat loss (QLA)

    In the case of the component 128, a relative heat loss can be specified via the specification value DQLR.
    In practice, however, the temperature conditions for the mill change only slightly with the load, so that a load-independent heat loss occurs. This can be specified via the specification value QLA. The flag FLOSS serves to define whether the relative or the absolute loss is to be used.

     


     

    User Input Values

    FFU

     

    Mill ON/OFF

    =0: OFF (If FFU=0, all inlet mass flows and enthalpies are expected to be specified, consequently, the values of FTMIX, FMMIX, FCM and FCMEB are of no 
          relevance)

    =1: ON

    FMODE

     

    Flag for calculation mode Design / Off-design

    = 0: global

    = 1: local off-design (i.e. always off-design, even if global design mode was selected)

    =-1:local design

    FDP12

     

    Pressure drop calculation (cold side)

    =0: using DP12N and characteristic field 1 (characteristic lines CL_1...CL10)

    =1: P2 given from outside

    DP12N

    pressure drop (nominal)

    FTMIX

     

    Mixing temperature TMIX13 specification

    =0: computed internally

    =1: externally at PIN 7

    FMMIX

    Mixed drying gas mass flow specification MMIX13

    =0: computed internally

    =1: externally at PIN 7

    FCM

    Gas mixing calculation

    =0: M1 OR M3 computed from TMIX13

    =1: M1 AND M3 given

    =2: MINGAS=M1+M3 given, M1 AND M3 computed

    =3: MINGAS=M1+M3 AND M1 OR M3 given

    FCMEB

    Mass and energy balance treatment

    =0: Compute the raw coal water content

    =1: TCLASS given, compute TMIX13

    =2: All inlet conditions given, T2 (TCLASS) computed

    =3: The fine coal residual water content calculated from the energy balance

    FQEL

    Electric power specification

    =0: calculated from Q6N and characteristic line Q6/Q6N=f(M4/M4N)

    =1: externally (PIN 6)

    MQEL

    Fraction of el. power converted to heat

    FLOSS

    Specification of heat losses

    =0: Specification by DQLR
    =1: Specification by QLA

    DQLR

    Heat loss (relative), (relative to the total heat supplied except chemically bound energy)

    QLA

    Heat loss (absolute)

    RXH2OBN

    Residual water content of fine coal nominal

    TOLMF

    Tolerance for mass fraction deviations (a warning is provided if the deviation between the computed and the specified water content of the raw coal exceeds the specified tolerance value)

    FTNI

    Unit used for calculation of TCLASS/TCLASSN in CL_12

    =0: Celsius
    =1: Fahrenheit
    =2: Kelvin

    MINGASN

    Inlet drying gas mass flow (M1+M3) (nominal)

    TCLASSN

    Classifier temperature (nominal)

    M4N

    Raw coal mass flow (nominal)

    Q6N

     Electric power (nominal)

    DGRN

     Raw coal to drying gas ratio (M4/MINGAS) (nominal)

    The parameters marked in blue are reference parameters for off-design, which are calculated by Ebsilon in the design mode. The actual off-design values refer to these parameters in the equations used.

     

     

    Allowed combinations of flags

    FCM 0 1 2 3
    FCMEB
    0 yes (FTMIX=1) yes (FTMIX=0) yes (FTMIX=1) yes (FTMIX=0)
    1 yes (FTMIX=0) no yes (FTMIX=0) no
    2 yes (FTMIX=1) yes (FTMIX=0) yes (FTMIX=1) yes (FTMIX=0)

    Results

    CWC4

    Computed raw coal water content

    CWC4DIFF

    Difference between CWC4 and the  spec. raw coal water content at PIN 4 

    CWCB4

    Computed minimal raw coal XH2OB value expected due to RXH2OB specification

    CWCB4DIFF

    Difference of CWCB4 to the spec. raw coal XH2OB value at PIN 4

    QDIFF

    Energy balance violation

    DP12

    Pressure drop

    DP12R

    Reference pressure drop

    Q6CL

    Electric power from characteristic line

    RXH2OB

    Residual water content of the fine coal (based on the mass flow at connection 2, but without carrier medium components (gases))

    MINGASCL

    Inlet drying gas mass flow from characteristic line

    QLOSS

    Heat loss

    DGR

    Raw coal to drying gas ratio

    QT

    Heat transferred from drying gas to coal

    MIMIN

    Relative drying gas mass flow

    M4M4N

    Relative fuel mass flow

    TCTCN

    Relative classifier temperature

    DGRDGRN

    Relative raw coal to drying gas ratio

    RTCLASS

    Computed classifier temperature

    T2FTCL

    Thermodynamic equilibrium outlet temperature T2 for desired classifier temperature


    Characteristic lines

    Char. lines 1 to 10: Pressure drop   DP12/DP12N = f (MINGAS/MINGASN) for different DGR/DGRN

         X-axis        1         MINGAS/MINGASN           1. point

                           2         MINGAS/MINGASN          2. point
                            .

                          N         MINGAS/MINGASN           last point
     
         Y-Axis       1          DP12/DP12N                     1. point

                          2          DP12/DP12N                     2. point

                           .

                          N         DP12/DP12N                     last point

    Char. line 11: Electric power Q6/Q6N = f(M4/M4N)

         X-axis        1        M4/M4N                            1. point

                           2        M4/M4N                           2. point

                           .

                           N        M4/M4N                           last point
     
         Y-axis         1        Q6/Q6N                            1. point
                           2        Q6/Q6N                            2. point
                           .
                           N        Q6/Q6N                           last point
     

    Char. line 12: Water content of fine coal RXH2OB/RXH2OBN = f(TCLASS/TCLASSN)

         X-axis        1        TCLASS/TCLASSN                1. point

                           2        TCLASS/TCLASSN               2. point
                            .

                           N        TCLASS/TCLASSN               last point
     
         Y-axis         1        RXH2OB/RXH2OBN             1. point

                           2        RXH2OB/RXH2OBN             2. point

                            .

                            N        RXH2OB/RXH2OBN           last point
     

    Char. line 13: Drying gas inlet mass flow MINGAS/MINGASN = f(M4/M4N)

         X-axis         1        M4/M4N                            1. point

                           2        M4/M4N                            2. point
                            .

                           N        M4/M4N                           last point
     
         Y-axis      1        MINGAS/MINGASN             1. point

                        2        MINGAS/MINGASN             2. point
                        .
                        N        MINGAS/MINGASN             last point
     


    Physics used

    Equations

    FFU=1

     

    MF2 - mass flow fine coal at outlet
    MH2O2 - mass flow of water steam at outlet
    QFM2 = Q((M1+M3+M5), TCLASS) – heat of gas at outlet
    HH2ODAMPF(TCLASS) - enthalpy water steam for T=TCLASS
    HF2 = HCoal(P2,TVIRT, RXH2OB) – enthalpy fine coal with residual water content RXH2OB at TVIRT, P2
    TVIRT - temperature at which the water in coal remains to be in the liquid phase at P2 
    COMP2 - composition at outlet 2 

    FMODE=0:
    {
       If FDP12=0
            DP12 = DP12N                                                               
        If FDP12=-1
            DP12 = P1 – P2

        Q6CL = Q6N
        RXH2OB = RXH2OBN
        MINGASCL = MINGASN     
    }

    FMODE=1:
    {
        If FDP12 = 0
             DP12 = f(Char. lines 1-10)*DP12N
        If FDP12=-1
             DP12 = P1 – P2

        Q6CL = f(Char. line 11) * Q6N
        RXH2OB = f(Char. line 12) * RXH2OBN
        MINGASCL = f(Char. line 13) * MINGASN
    }

    P1 - P2 = DP12                                                                              (1)

    If FMMIX=0
        MMIX13 = MINGASCL
    If FMMIX=1
        MMIX13 = M7

    If FTMIX = 1
        TMIX13 = T7 
        HMIX13 = f(TMIX13) - mixing enthalpy of drying gas 

    All FMODE

        M2 = M1 + M3 + M4 + M5                                                      (2)
        M7 = M1 + M3                                                                        (3)
        If FQEL=0
           QEL = Q6CL                                                                          (4)
        If FQEL=1
            QEL = Q6
        QGRIND = QEL*MQEL 
        QLOSS = DQLOSS*(Q1+Q3+Q4+Q5+QGRIND)

    If FCM = 0
        M1 or M3 computed from
        M1*(H1-HMIX13)+M3*(H3-HMIX13)=0                                      (5)
    If FCM = 1
        HMIX13 = f(M1, M3) 
    If FCM = 2
        M1 or M3 computed from
        M1 + M3 = MMIX13                                                               (6)
    If FCM = 3
         M1 or M3 computed from (5) and (6)


    If FCMEB = 0 
        Heat transferred from drying gas to coal: 
        QT = Q1 + Q3 + Q5 + QGRIND –QFM2 
        Water content raw coal:
        M9 = CWC4 = ((QT + Q4 - QLOSS)*(1- RXH2OB)/M4 – HF2 +
        HH2ODAMPF(TCLASS)* RXH2OB) / (HH2ODAMPF(TCLASS) - HF2) (7)
        CWC4DIFF = CWC4 - XH2OB4 – XH2O4
        Energy balance violation due to CWC4DIFF
        M2*H2EB = Q1+Q3+Q4+M4*HU4+Q5+QGRIND-QLOSS
        QDIFF = M2*H2EB - M2*(H2+HU2)
    If FCMEB = 1
        QT = HF2*MF2 + MH2O2 * HH2ODAMPF(TCLASS)-Q4
        QMIX13 = QT – QGRIND –Q5 + QFM2 + QLOSS
        H7 = HMIX13 = QMIX13 / MINGASCL                                       (8)
    If FCEMEB = 0 OR FCMEB = 1
        TCLASS = H8
        H2 = f(P2, TCLASS, TVIRT, COMP2)                                            (9)
        T2 = f(P2,H2,COMP2) 
    If FCMEB = 2 
        H2 = (Q1+Q3+Q4+Q5+QGRIND-QLOSS) / M2                          (10)
        Composition at outlet without residual water content of fine coal:
        COMPVIRT = COMP2 – f(RXH2OB)
        corresponding enthalpy:
        H2VIRT = (Q1+Q3+Q4-QF2+Q5+QGRIND-QLOSS) / (M2-MF2)
        TCLASS = f(H2VIRT, P2, COMPVIRT)
        H8 = TCLASS                                                                           (11) 

    Component Displays

    Display option 1

    Example

    Click here >> Component 128 Demo << to load an example.